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Abstract

We study the fundamental mechanism design problem of al-
locating a set of items among additive agents, without mon-
etary transfers. It is well known that the only deterministic
mechanism that satisfies Pareto efficiency and truthfulness is
the serial dictatorship. A central problem is whether random-
ized rules can simultaneously satisfy truthfulness, efficiency,
and provide any non-trivial fairness guarantee. We settle this
open problem in the negative, by showing that, even for the
case of two agents, every Pareto efficient and truthful mecha-
nism is a serial dictatorship.

1 Introduction
We study the fundamental mechanism design problem of
allocating a set of items among a set of agents with addi-
tive utilities. In this elementary setting, the tension between
truthfulness, fairness, and efficiency is well-understood.
Achieving all three is generally impossible, see e.g. (Kojima
2009). There are randomized rules (or, equivalently, if items
are divisible) that are envy-free and Pareto efficient, simul-
taneously (Varian 1973). And, even though envy-freeness is
generally impossible for deterministic rules,1 there is an ef-
ficient, deterministic rule that satisfies a compelling notion
of fairness: envy-freeness up to one item (EF1) (Caragian-
nis et al. 2019). On the other hand, there is no deterministic
and truthful mechanism that always outputs an EF1 alloca-
tion (Amanatidis et al. 2017), even for two additive agents.
Randomization allows us to circumvent this negative result:
randomly allocating each item is truthful and envy-free.

Truthfulness and efficiency can be simultaneously achieved
via a serial dictatorship. Unfortunately, a dictatorship is typ-
ically the only deterministic, truthful and efficient mecha-
nism, in a number of settings, see e.g. (Pápai 2000; Klaus
and Miyagawa 2002; Ehlers and Klaus 2003). A central open
problem is whether randomization can provide an escape
from these negative results. Our research question is:

Is there a (randomized) non-dictatorial, truthful and
Pareto efficient mechanism for additive agents?
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1Consider the case of a single item and two agents with strictly
positive valuation.

We prove that the answer is an emphatic “no”! The only
truthful and Pareto efficient mechanism for two additive
agents is a dictatorship, even when randomization is allowed
(or, equivalently, when items are divisible).

Challenges. Structural results about truthful determinis-
tic mechanisms typically start by fixing the outcome of the
mechanism on a specific instance (e.g., “in instance I , item
1 goes to agent A, without loss of generality”), and then use
truthfulness to argue about the outcomes in other, similar in-
stances (e.g. “in instance I ′, item 1 should go to agent A,
otherwise she would have an incentive to deviate in a way
that results in instance I”) to slowly propagate to every pos-
sible instance. Truthfulness is a constraint connecting the
utility of an agent between instances, and there might be
many different allocations of the items that yield the same
utilities. Therefore, the main technical task is to argue about
how utilities should map to allocations. This task is vastly
simpler when allocations are deterministic. That is, if we’ve
established that every instance with k items should give all
items to agent A, there are only a few possibilities for an in-
stance with k + 1 items: truthfulness implies strong lower
bounds on the (previous) dictator’s utility, and efficiency
narrows down the possibilities even more, making even a
case analysis tractable.

For randomized mechanisms this common proof structure
immediately breaks down. E.g., for the case of a single item
and two agents, ignoring the agents’ reported values and flip-
ping a biased coin that gives the item to agent A with proba-
bility α (and agent B with probability 1− α) is truthful and
efficient (as long as both agents have positive value). But,
it is not clear what this choice implies for other instances:
truthfulness gives some loose bounds on the utility of each
agent, which, in turn, implies some loose constraints on the
allocation space, but no insight on the mechanism’s structure
whatsoever. We bypass such issues by carefully selecting the
instances for which truthfulness implies the strongest possi-
ble constraints on the allocation. Additive utilities imply ad-
ditional, linear constraints for the agent’s utilities, since the
Pareto frontier is comprised of lines. In addition to restrict-
ing the utility space, these linear constraints significantly
narrow down the allocation space for a given instance as
well. Truthfulness can then be used to rule out many alloca-
tions, allowing us to make progress.



1.1 Related Work
A long series of works characterize deterministic mecha-
nisms in the absence of money, e.g. (Pápai 2000; Klaus and
Miyagawa 2002; Ehlers and Klaus 2003; Nesterov 2017;
Svensson 1999). Most of these works show that determin-
istic, truthful and efficient mechanisms are dictatorial, un-
der various utility functions (unit-demand, additive, etc)
and various combinations of other desirable axioms (e.g.
anonymity, neutrality, non-bossiness, etc). (Amanatidis et al.
2017) completely characterize deterministic and truthful
mechanisms for two additive agents. One immediate corol-
lary of their characterization is that deterministic, truthful
and Pareto efficient mechanisms are dictatorships.2. As we
prove in this paper, this result persists even for random-
ized mechanisms. Closer to this work, (Kojima 2009; Aziz
and Kasajima 2017) study randomized mechanisms. (Ko-
jima 2009) shows that there exists no mechanism that is or-
dinally efficient, envy-free and weakly strategy-proof. (Aziz
and Kasajima 2017) show that equal treatment of equals, ef-
ficiency, and strategy-proofness are incompatible. Here we
show a much stronger impossibility result: the only strategy-
proof and efficient mechanism is a dictatorship.

One way to escape the aforementioned impossibility results
is to focus on special cases. In recent work, (Halpern et al.
2020; Babaioff, Ezra, and Feige 2021) show that truthfulness
(and even group-strategyproofness), Pareto efficiency, and
approximate fairness are compatible when agents are addi-
tive and have binary values, or when agents have dichoto-
mous marginals. Leontief valuations also allow for truthful,
fair and efficient rules (Ghodsi et al. 2011; Friedman, Gh-
odsi, and Psomas 2014).

A line of work initiated by Procaccia and Tennenholtz strives
to design truthful, fair, and approximately efficient mech-
anisms (Procaccia and Tennenholtz 2013). Approximately
efficient mechanisms can bypass the limitations of efficient
mechanisms by throwing away resources as a substitute
for payments, a technique known as money-burning (Hart-
line and Roughgarden 2008; Fotakis et al. 2016; Friedman
et al. 2019; Abebe et al. 2020). The works closest to ours
are (Cole, Gkatzelis, and Goel 2013), which give truth-
ful, fair and approximately efficient mechanisms, even for
valuation functions more general than additive, and (Guo
and Conitzer 2010; Han et al. 2011; Aziz et al. 2016) that
study truthful and approximate optimal welfare maximiza-
tion. One interpretation of our result is that, if truthfulness
is a hard constraint, then money-burning is necessary to get
any non-trivial fairness guarantees.

Finally, our setting is closely related to the problem of truth-
ful cake-cutting; e.g., see (Mossel and Tamuz 2010; Maya
and Nisan 2012; Chen et al. 2013; Tao 2021). We note that

2Other than the focus on deterministic mechanisms, one differ-
ence between our work and (Amanatidis et al. 2017) is that here
we allow items’ valuations to be zero. When valuations are always
strictly positive, mechanisms that “reserve” a single item for an
agent, and exchange it if there is a Pareto improvement, are truthful,
slightly expanding the set of truthful and deterministic mechanisms
beyond serial dictatorships;

in the cake-cutting setting, there are no deterministic, truth-
ful and proportional cake cutting mechanisms (Tao 2021),
but, as opposed to what we prove in this paper, randomiza-
tion does provide an escape (Mossel and Tamuz 2010).

2 Preliminaries
We consider the problem of allocating a setM of m items
among 2 agents with additive utilities. To simplify nota-
tion, instead of explicitly arguing about indivisible items,
randomized rules and expected utility, we will assume that
the items are divisible; the two settings are equivalent (this
equivalence is discussed in (Guo and Conitzer 2010; Aziz
et al. 2016)). A fractional allocation x defines for each agent
i ∈ {1, 2} and item j ∈ M the fraction xij of the item that
the agent will receive. A feasible allocation satisfies, for all
items j ∈M,

∑
i∈{1,2} x

i
j ≤ 1.

Agents are additive. Each agent i ∈ {1, 2} has a non-
negative valuation vij for receiving the entirety of item j, and
has a utility ui(x) =

∑
j∈M xij · vij for a fractional alloca-

tion x. Without loss of generality, we assume that vij ∈ [0, 1]
for all items j ∈M and agents i ∈ {1, 2}.

An allocation x is Pareto efficient if there is no feasible allo-
cation x′ such that for all agents i ∈ {1, 2}, ui(x′) ≥ ui(x),
with at least one inequality being strict.

A mechanism elicits values vij for each item j ∈ M, for
every player i ∈ {1, 2}, and outputs a feasible allocation. We
write xij(~v

1, ~v2) for the fraction of item j allocated to agent
i when each agent i ∈ {1, 2} reports a vector of valuations
~vi =

(
vi1, . . . , v

i
m

)
.

We focus on efficient mechanisms, i.e. those which always
output a Pareto efficient allocation. We also focus on truth-
ful mechanisms; a mechanism is truthful if agents cannot
strictly improve their utility by misreporting their valuation.
Formally, for every agent i ∈ {1, 2}, every possible valua-
tion vector ~vi, every possible valuation vector of the other
agent ~v−i, and every possible report for agent i ~bi, we have∑
j∈M vij · xij(~vi, ~v−i) ≥

∑
j∈M vij · xij(~bi, ~v−i).

3 Truthfulness and Efficiency imply a
Dictatorship

In this section we prove our main result.

Theorem 1. Every truthful and Pareto efficient mechanism
for two additive agents and m ≥ 2 items is a dictatorship.
That is, one of the two agents deterministically receives all
the items she has a positive value for.

Proof. We will prove Theorem 1 via induction. Let Ik be
the set of all possible instances where both agents report a
value of zero for items k+ 1 through m, i.e. instances of the
form

I =

[
v11 v12 . . . v1k 0 . . . 0
v21 v22 . . . v2k 0 . . . 0

]
,

where vij ≥ 0 (for j ≤ k).



Fix an arbitrary truthful and efficient mechanism M∗. We
will show that M∗ is a dictatorship. Throughout this proof,
we write xij(I) for the fraction of item j allocated to agent i
by M∗ in instance I , and ui(I) for agent i’s utility.

Consider the following instance I∗ ∈ I1:

I∗ =

[
1 0 . . . 0
1 0 . . . 0

]
.

SinceM∗ is efficient, we have that x11(I∗)+x12(I∗) = 1. Let
α = x11(I∗) (and therefore x12(I∗) = 1−α); without loss of
generality, α ≥ 1/2. We will show that agent 1 is a dictator,
i.e. she receives all items she has a (strictly) positive value
for (implying that α has to, in fact, be equal to one). We will
prove this statement via induction on k, starting with k = 2.

3.1 Induction Basis
Our first goal is to show that for all I ∈ I2, agent 1 receives
all items she has a (strictly) positive value for. Recall that in
instance I∗ we had x11(I∗) = α ≥ 1/2.

First, we show that all instances in I1 have exactly the same
allocation.

Lemma 1. For all I ∈ I1 such that v11 , v
2
1 > 0, x11(I) = α

and x21(I) = 1− α.

Proof. Consider an instance Ia ∈ I1 of the form:

Ia =

[
a 0 . . . 0
1 0 . . . 0

]
.

where a > 0. If x11(Ia) > x11(I∗), then agent 1 has an in-
centive to deviate from I∗ to Ia. If x11(Ia) < x11(I∗), then
agent 1 has an incentive to deviate from Ia to I∗. Therefore,
x11(Ia) = x11(I∗) (and therefore x21(Ia) = x21(I∗)). Now,
consider an instance I(a,b) ∈ I1 of the form:

I(a,b) =

[
a 0 . . . 0
b 0 . . . 0

]
,

where a, b > 0. If x21(Ia) > x21(I(a,b)), then agent 2

has an incentive to deviate from I(a,b) to Ia. If x21(Ia) <

x21(I(a,b)), then agent 2 has an incentive to deviate from Ia
to I(a,b). Therefore, x21(Ia) = x21(I(a,b)) = α (and therefore,
x11(Ia) = x11(I(a,b)) = 1− α). The lemma follows.

Next, consider an instance I ∈ I2, such that the second item
is desired by exactly one of the two agents. Pareto efficiency
implies that this item should go to the agent that values it.
The next lemma shows that the allocation of the first item
cannot deviate much from the allocation in I1 instances.

Lemma 2. Consider instances I2(a,b,c), Î
2
(a,b,c) ∈ I

2:

I2(a,b,c) =

[
a b 0 . . .
c 0 0 . . .

]
, Î2(a,b,c) =

[
c 0 0 . . .
a b 0 . . .

]
.

Then, x11(I2(a,b,c)) ∈ [α − b, α] and x21(Î2(a,b,c)) ∈ [1 − α −
b, 1 − α]. Furthermore, xij(I

2
(a,b,c)) = xij(I

2
(a′,b′,c′)) and

xij(Î
2
(a,b,c)) = xij(Î

2
(a′,b′,c′)), for all a, a′, b, b′, c, c′ > 0.

Proof. For I2(a,b,c), we have that item 2 must be allocated
to agent 1, by Pareto efficiency. Consider the case where
a = 1. Then, agent 1’s utility when reporting honestly is
x11(I2(1,b,c)) + b. By Lemma 1, her utility when (dishonestly)
reporting v12 = 0 is exactly α, therefore, by truthfulness,
x11(I2(1,b,c)) ≥ α − b. Again by Lemma 1, if her true val-
ues are v11 = 1 and v12 = 0, she gets utility α, while
reporting v12 = b gives her utility x11(I2(1,b,c)), implying
α ≥ x11(I2(1,b,c)). Overall, we have that α ≥ x11(I2(1,b,c)) ≥
α − b. Next, notice that if x11(I2(a,b,c)) 6= x11(I2(a′,b′,c)) for
some a, b, a′, b′, c > 0, agent 1 has an obvious incentive
to report the values that yield the higher allocation; a con-
tradiction. Since x21(I2(a,b,c)) = 1 − x11(I2(a,b,c)), we have
xij(I

2
(a,b,c)) = xij(I

2
(a′,b′,c)) for all a, a′, b, b′, c > 0. Fi-

nally, notice that if xij(I
2
(a,b,c)) 6= xij(I

2
(a,b,c′)), for some

a, b, c, c′ > 0, then agent 2 has an incentive to misreport.
The claims about I2(a,b,c) follow.

Similarly, in instance Î2(a,b,c) item 2 is allocated to agent 2,
as long as b > 0. For a = 1 agent 2’s (honest) utility is
x11(Î2(1,b,c))+b, which is at least 1−α (her allocation of item
1 when she reports v22 = 0). Furthermore, 1 − α is at least
x11(Î2(1,b,c)), otherwise there is an incentive to misreport in
the other direction. The second part of the lemma is identical
to above.

Notice that Lemma 2 implies that

α ≥ x11(I2(a,b,c)) = x11(I2(a,b′,c)) ≥ α− b
′,

for all b′ > 0. That is, the bounds on x11(I2(a,b,c)) do not
depend on a, b, c, and hold for all b′. The same observation
can be made about x11(Î2(a,b,c)). The following corollary is
immediate:

Corollary 1. x11(I2(a,b,c)) = α and x11(Î2(a,b,c)) = α, for all
a, b, c > 0.

Fix some small ε ∈ (0, 1). Our next lemma shows that the
allocation in I2(ε,1,1) remains unchanged if agent 2 has value
v22 = ε instead of zero.

Lemma 3. Consider the following instance I1 ∈ I2:

I1 =

[
ε 1 0 . . . 0
1 ε 0 . . . 0

]
.

Then, M∗ satisfies x22(I1) = 0, and x21(I1) = 1− α.

Proof. The Pareto frontier of I1 can be seen in Figure 1,
and consists of two lines: (1) u2 + ε · u1 = 1 + ε, and (2)
ε ·u2 +u1 = 1 + ε. Since M∗ is Pareto efficient, the agents’
utilities must satisfy at least one of two equations.



0.5 1

0.5

1

(1 + ✏)

(1 + ✏) u1

u2

1

Figure 1: The Pareto frontier of instance I1
.

First, consider the case that u2(I1) + ε · u1(I1) = 1 + ε.
Expanding these utilities, and using the fact that x2j (I1) =

1− x1j (I1), we have

1− x11(I1) + ε− εx12(I1) + ε2x11(I1) + εx12(I1) = 1 + ε

−x11(I1) + ε2x11(I1) = 0

x11(I1)(ε2 − 1) = 0,

implying that x11(I1) = 0 (since ε 6= 1). If this was the case,
reporting v22 = ε when the truth is v22 = 0 would improve
agent 2’s utility from at most 1−α (by Lemma 2) to 1. Since
α > 0, this is a contradiction.

Therefore, the agents’ utilities in I1 must lie in the second
line, i.e. ε · u2(I1) + u1(I1) = 1 + ε. Expanding we get:

ε− εx11(I1) + ε2 − ε2x12(I1) + εx11(I1) + x12(I1)) = 1 + ε

(1− ε2)x12(I1) = 1− ε2,

implying that x12(I1) = 1. Thus, u2(I1) = x21(I1). No-
tice that if x21(I1) 6= x21(I2ε,1,1), agent 2 has an incentive
to report whichever v22 yields the higher allocation (out of
v22 = 0, giving I2(ε,1,1), or v22 = ε, giving I1), which is a vi-
olation of truthfulness. Therefore, by Corollary 1, x21(I1) =
x21(I2(ε,1,1)) = 1− α.

Lemma 3 already shows that M∗ slightly favors agent 1,
at least in instance I1. Notice that the proof of Lemma 3
itself never used any non-trivial facts about α, other than
the fact it is at least 0. Therefore, the next natural step is to
consider an instance symmetric to I1 (since there cannot be
two dictators, the same type of reasoning should lead to a
contradiction). Specifically, consider

I2 =

[
1 ε 0 . . . 0
ε 1 0 . . . 0

]
.

We will argue that M∗ favors agent 1 even in I2, and in fact
that α = 1.

Lemma 4. It holds that α = 1.

Proof. The Pareto frontier of I2 is identical to I1. This
means that there are, again, two cases for the agents’ util-
ities: (1) u2 + ε · u1 = 1 + ε, or (2) ε · u2 + u1 = 1 + ε.

Case 1. Assume that u2(I2) + ε ·u1(I2) = 1 + ε. Expand-
ing and simplifying we get that (1 − ε2)x22(I2) = 1 − ε2,
i.e. x22(I2) = 1. Therefore, u1(I2) = x11(I2). Further-
more, notice that if x11(I2) 6= x11(Î2ε,1,1), there is an incen-
tive for agent 1 to report whichever v12 yields the higher al-
location, violating truthfulness. Therefore, by Corollary 1,
x11(I2) = x11(Î2ε,1,1) = α.

Next, consider the following instance:

Ī =

[
ε 1 0 . . . 0
ε 1 0 . . . 0

]

Agent 1’s truthfulness constraints from I2 to Ī imply that
x11(I2) ≥ x11(Ī) + εx12(Ī) = 1 + ε − (x21(Ī) + εx22(Ī)).
Agent 2’s truthfulness constraints from I1 to Ī imply that
x21(I1) ≥ x21(Ī) + εx22(Ī). Therefore, M∗ should satisfy

x21(I1) ≥ 1 + ε− x11(I2)

1− α ≥ 1 + ε− α
0 ≥ ε,

where we used the facts that x11(I2) = α, and x21(I1) = 1−α
(Corollary 1). Since we chose ε > 0, this is a contradiction.
Therefore, u2(I2) + ε · u1(I2) 6= 1 + ε.

Case 2 Since Case 1 is infeasible, it must be that ε ·
u2(I2) + u1(I2) = 1 + ε. Expanding and simplifying gives

ε2 − ε2x11(I2) + ε− εx12(I2) + x11(I2) + εx12(I2) = 1 + ε

(1− ε2)x11(I2) = 1− ε2,

which implies that x11(I2) = 1.

Finally, consider the truthfulness constraints of agent 1 from
Î2(ε,1,1) to I2, recalling that

Î2(ε,1,1) =

[
1 0 0 . . .
ε 1 0 . . .

]
.

We have u1(Î2(ε,1,1)) = x11(Î2(ε,1,1)) = α ≥ x11(I2) = 1.

To conclude the proof of the induction basis, it suffices to
show that α = 1 implies that agent 1 receives all items she
has a positive value for, in every instance in I2.

First, consider instances of the form

I(a,b) =

[
a b 0 . . .
1 ε 0 . . .

]
.

By Lemmas 3 and 4 we have that agent 1 can always get
any items she wants (from the first two) if she simply re-
ports v11 = ε and v12 = 1, instead of a and b. Therefore,



x11(I(a,b)) = x12(I(a,b)) = 1, if a, b > 0. Then, if there was
an instance I ∈ I2 of the form

I =

[
a b 0 . . .
c d 0 . . .

]
,

such that x21(I) > 0 or x22(I) > 0 (with the correspond-
ing a, b also strictly positive), then agent 2 would have an
incentive to deviate (from I(a,b)); a contradiction.

This concludes the proof of the induction basis.

3.2 Induction step
Assume that for all I ∈ Ik we have that agent 1 receives all
items she has a positive value for. Our goal in this section is
to show that the same is true for all instances in Ik+1.

First, fix an arbitrary ε ∈ (0,
√

1/k) and a vector ~a =
(a1, . . . , ak).

Consider the following instance:

S(~a,ε) =

[
1 1 . . . 1 ε 0 . . .
a1 a2 . . . ak 0 0 . . .

]
.

By Pareto efficiency, x1k+1(S(~a,ε)) = 1. And, since agent
1 can get all of the first k items by reporting v1k+1 = 0,
truthfulness implies that

∑k
i=1 x

1
i (S(~a,ε)) + ε ≥ k.

Similarly, it holds that
∑k
i=1 x

1
i (S(~a,δ)) ≥ k − δ, for every

δ ∈ (0, 1). If
∑k
i=1 x

1
i (S(~a,δ)) 6=

∑k
i=1 x

1
i (S(~a,ε)), agent 1

has an incentive to report v1k+1 (either ε or δ) in a way that
maximizes her allocation; a contradiction.

Therefore, k ≥
∑k
i=1 x

1
i (S(~a,ε)) =

∑k
i=1 x

1
i (S(~a,δ)) ≥ k −

δ, for all δ > 0. Thus,
∑k
i=1 x

1
i (S(~a,ε)) = k.

Next, consider the following instance S ∈ Ik+1:

S =

[
ε ε . . . ε 1 0 . . .
1 1 . . . 1 0 0 . . .

]
.

First, notice that x1k+1(S) = 1, by Pareto efficiency. Fur-
thermore, since agent 1 can deviate to S(~1,ε),

∑k
i=1 x

1
i (S)

has to be at least
∑k
i=1 x

1
i (S(~1,ε)) = k. And, since the al-

location of the first k items is at most k, we overall have∑k
i=1 x

1
i (S) = k. That is, agent 1 gets all items in S.

The next lemma shows that this situation remains unchanged
when v2k+1 slightly increases.

Lemma 5. Consider the instance S1 ∈ Ik+1

S1 =

[
ε ε . . . ε 1 0 . . .
1 1 . . . 1 ε 0 . . .

]
.

Then, agent 1 receives all items in S1, i.e. x1i (S1) = 1, for
all i = 1, . . . , k.

Proof. Assume that M∗ allocates a (strictly) positive frac-
tion of one of the first k items to agent 2 in S1. How-
ever, since agent 2 gets nothing in S, this would imply a
violation of truthfulness, since agent 2 would prefer to re-
port v2k+1 = ε when the truth is v2k+1 = 0. Therefore,∑k
i=1 x

2
i (S1) = 0 and

∑k
i=1 x

1
i (S1) = k. Also, we im-

mediately have that u2(S1) = εx2k+1(S1) ≤ ε

Next, we argue that kεu2(S1) + u1(S1) = 1 + kε.

First, notice that

kεu2(S1) + u1(S1) = kε
(
εx2k+1(S1)

)
+ εk + x1k+1(S1)

= 1 + εk + x2k+1(S1)(kε2 − 1)

≤ 1 + εk,

where we used the fact that kε2 − 1 < 0, since we picked
ε <

√
1/k. Second, it is feasible to get utility points (1, k)

and (1 +kε, 0): the first point is achievable by allocating the
first k items to agent 2 and the last item to agent 1, and the
second point is achievable by allocating all items to agent 1.
Third, the line that connects (1, k) and (1 + kε, 0) is exactly
kεu2 + u1 = 1 + kε, i.e. all the utility points on this line
are feasible. Combining the first and third observations, we
have that allocations that yield utilities such that kεu2+u1 =
1+kε, are Pareto efficient. Finally, sinceM∗ is efficient and
u2(S1) ≤ ε, it must be that M∗ selects such at point, i.e.
kεu2(S1) + u1(S1) = 1 + kε.

Then, notice that

kεu2(S1) + u1(S1) = 1 + kε

1 + εk + x2k+1(S1)(kε2 − 1) = 1 + kε

x2k+1(S1)(kε2 − 1) = 0,

implying that x2k+1(S1) = 0. The lemma follows.

Given Lemma 5 it is straightforward to conclude the proof
of Theorem 1.

First, consider any possible valuation ~a = (a1, . . . , ak+1)
for agent 1, and instances of the form:

S~a =

[
a1 a2 . . . ak ak+1 0 . . .
1 1 . . . 1 ε 0 . . .

]
.

Agent 1 should receive all items she has a positive value for,
otherwise she will deviate to S1 (and receive all items).

Finally, consider any possible valuation ~b = (b1, . . . , bk+1)
for agent 2, and instances of the form:

S(~a,~b) =

[
a1 a2 . . . ak ak+1 0 . . .
b1 b2 . . . bk bk+1 0 . . .

]
.

If agent 2 gets a (strictly) positive fraction of an item j such
that aj > 0, this would give an incentive to deviate from S~a,
where she receives nothing, to S(~a,~b); a contradiction.

This concludes the proof of Theorem 1.



4 Conclusion
In this paper we prove that the only truthful and Pareto effi-
cient mechanism for allocating items to additive agents is the
serial dictatorship, even among the set of randomized mech-
anisms. Therefore, as opposed to the closely-related prob-
lem of truthful cake-cutting (Mossel and Tamuz 2010; Tao
2021), randomization does not provide a means for escaping
strong impossibility results.

In the context of fair division, our results imply that if we
want to be truthful and fair (for any reasonable definition of
fairness) we must be inefficient. This gives a concrete, tech-
nical justification for studying truthful and approximately
efficient no-money mechanisms à la (Cole, Gkatzelis, and
Goel 2013; Guo and Conitzer 2010; Han et al. 2011; Fried-
man et al. 2019; Abebe et al. 2020).

Another interesting research direction is whether efficiency,
fairness are compatible with weaker notions of truthfulness,
e.g. similar to (Mennle and Seuken 2014, 2016; Tao 2021).
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