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EXECUTIVE SUMMARY 

 

In our project, our team uncovers the validity of using off-the-shelf machine learning (ML) 

models, commonly used in industry, to validate graph data structures for testing purposes.  Our 

research aims to increase the efficiency of conventional software testing with trained machine 

learning models. To prove the validity of implementing ML models as data structure checks, we 

generate datasets of graphs with varying properties, train ML models to recognize invariants in 

the graphs, and integrate an end-to-end product using the ML models in a JUnit test suite. With 

our project, we were able to conclude that certain graph properties are easily learnable and that 

these models can be packaged into useful runtime testing tools. In section one Introduction, we 

outline the contents of the paper and describe the motivation of the research to explore 

automation in testing. 

 

Using the description of prior art as a model for our research, we discuss the goals and 

deliverables for our project in section two Design Problem. Within section two, The Background 

portion discusses the research paper, A Study of Learning Data Structure Invariants Using 

Off-The-Shelf Tools [1], which outlines the system design that our project is based on. The Goals 

section discusses the two overarching objectives of our project: to extend the study from this 

paper and to test the efficiency of the research in a normal software testing workflow. To 

complete these goals, we use the Project Specifications section to describe the three main 

deliverables for our project, consisting of a GitHub Repository, an Integrated Testing Tool with 

the ML models included in a software testing system, and this Final Paper. 

 

In the third section Design Solution, we discuss all of our tangible work throughout the course of 

the project, culminating with this paper describing the final system design solution. The design is 

broadly broken down into three modules: Data Generation, Machine Learning, and Integrated 

Testing Tool. Our Data Generation module describes all the pieces needed to generate data for 

the five graph invariants or properties: contains self-loops, K-regularity, acyclicity, density 

(greater than 0.70), and contains exactly one root. The tools used to produce the data incluse 
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Korat, a test-input generation tool, to create the raw data, Python to parse the data from Korat, 

and GitHub to store the clean data for the ML models. The Machine Learning Models module 

then trains, tests, and evaluates the ML models using the data from the Data Generation module 

with Python notebooks and the Scikit Python library. Finally, the most accurate models are 

implemented in an end-to-end software testing flow within JUnit, a common software testing 

suite, in the Integrated Testing Tool module. 

 

In section four Design Implementation, we highlight three key areas where we faced obstacles 

including the high complexity of our initial proposed invariants, overhead of data generation, and 

selection of machine learning models. To combat these we reduced the complexity of our 

invariants, reduced the number of machine learning models we were using, and modified certain 

dataset properties to boost performance. 

 

In the fifth section Test and Evaluation, we describe how we tested and evaluated our entire 

design process and workflow. First, we tested Korat through some theoretical computations as 

well as visualizations for the Korat graph output. Using the visualizations, we were able to notice 

how Korat does not put repeated edges or self-loops. Additionally, we were able to test and see 

how long Korat took for graphs of size n, where we were able to variable change n. Second, we 

tested our Machine Learning Models module. We trusted that the machine learning models 

themselves had been tested for accuracy and correctness since they were available through 

credible library sources that millions of users use. What remained for us to test was our use of 

the models and specifically how well they were learning these graph invariants. To do this we 

used various model metrics such as accuracy, precision, recall, Log loss, and Area under Curve. 

In general, our results consisted of high accuracy/precision. This showed us that most of these 

invariants are easily learned by the machine learning models. Lastly, we had to test our 

implementation of these ML models as integrated testing files. Essentially, we wrote a function 

to convert adjacency matrices to candidate vectors and then ran those vectors through our models 

to get a binary classification of that vector. To get a better understanding of the success of our 

module, we measured the time and space cost of each model within their Java wrapper methods. 
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Next, we describe our time and cost considerations in section six. Our budget was $0 since our 

research was entirely software based without any need for specialized hardware. In terms of 

time, we initially planned to work on all invariants concurrently. However, to reduce the number 

of issues we faced for each invariant, we ran the oneRoot invariant through the entire workflow 

before working on the other invariants. Due to COVID-19, we cut the scope of our project and 

did not allocate any time towards finding a real-world software system that our tool could easily 

be integrated into. 

 

In Section seven Safety and ethical Aspects of Design, we describe potential ethical issues with 

our system design. Since our project is a software testing research effort, there are no immediate 

physical safety concerns to us as developers or to users. However, the users working with little 

tolerance for error should know that our ML models may output incorrect answers because the 

models are trained on biased data and our evaluation proved a 0.1% probability of inaccuracy. 

  

In the penultimate section, we discussed recommendations for groups looking to extend our work 

as well as alternative design decisions we could have made. We recommend that other groups 

look into creating larger datasets with the help of supercomputers, improve upon Korat itself, 

hypertune the ML models for specific applications, and find specific real-world software systems 

for integration. Some alternative design decisions are making the model creation process more 

streamlined making our testing tool independent of any specific language (in our case Java). 

Further, we describe the faults and biases in Korat generation, recommending modifications in 

both data generation and ML model evaluation. 

 

Lastly, in section nine Conclusion, we summarize the findings from our research project and 

guide future research in Korat generated ML models for data structure verification. 
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1.0  INTRODUCTION  

In our research, we are uncovering the validity of using off-the-shelf machine learning (ML) 

models, a common public ML model used in industry, to validate data structures for testing 

purposes. “Data structures invariants”, or properties, “play a key role in testing and verification” 

[1]. Further, the automation of testing techniques is becoming increasingly more important. 

Since software is becoming more pervasive in everyday life, industry will produce more code 

and data. However, the public tolerance for software errors is not increasing proportionally to the 

amount of code generated. Instead, due to society's increased dependence on technology, the 

tolerance for error is decreasing. To decrease software errors in an environment with 

exponentially growing codebases, our team is exploring the application of ML to automate data 

structure invariant validation. We investigate, specifically, the process of generating graph 

structures for testing and training models using a testing generator, Korat, as done in the paper, A 

Study of Learning Data Structure Invariants Using Off-The-Shelf Tools [1]. We refer the reader 

to Training binary classifiers as data structure invariants [2] by Molina et. al. for more 

background on the problem and its motivations.  

 

In the Design Problem section of this report, we provide further background of this original study 

[1] that provides the foundational processes to generate data as well as train, test, and evaluate 

ML models. We use the processes described in the paper [1]  to evaluate the efficacy of using 

ML models to validate graph invariants. Then, we test the integration of the models in a common 

software testing suite, JUnit. In order to complete our two main goals, evaluating ML models 

that validate graph invariants and integrating the models in a software testing process, our team 

developed a system design with four modules. The technical deliverables and designs for the 

four modules -- Data Generation, ML Models, Testing Integration, and Final Paper -- are 

described in the Design Solution section of the Paper. 

 

The implementation and evaluation of our system design is described in the Design 

Implementation and Test and Evaluation sections of this paper. In the Design Implementation 

section, we explain the problems we faced that led us to adjust our system design in the 
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following three ways: changing the invariants to simpler graph invariants, choosing a subset of 

ML models, and adjusting the properties of our training data sets. In the Test and Evaluation 

section, we describe the system's success in creating accurate models for graph invariants. 

 

In the rest of the paper -- Time and Cost Considerations, Safety and Ethical Aspects of the 

Design, and Recommendations -- we further evaluate our system design as well as our team’s 

efficacy in implementing the design in a timely, cost-effective, and ethical manner. In the Time 

and Cost Consideration section, we detail how we changed our project schedule to allow for 

more time to test and iterate. In the Safety and Ethical Aspects section, we describe potential 

ethical issues in implementing these ML models in industry. In the Recommendation section, we 

reveal faults in the overall design that may have led to overconfidence of the model’s accuracy. 

Further, we suggest potential solutions and implementation changes on the system to create a 

more robust and accurate system in further research. 

 

2.0  DESIGN PROBLEM  

In this section, we cover the background of our project broken into three subsections: 

Background, Goals, and Deliverables. The Background section summarizes the research 

paper, A Study of Learning Data Structure Invariants Using Off-The-Shelf Tools [1], which 

serves as the foundation of our project. The Project Goals section defines two goals-- to 

extend Dr. Khurshid’s study and to test the efficiency of the research in a normal software 

testing workflow -- that needed to be met for the project to be considered successfully 

completed. Finally, the Deliverables section outlines and describes three Deliverables -- a 

GitHub Repository, an integration of the models in a software testing system, and a Final 

Paper -- that our team created this semester to meet the project goals. For each Deliverable, 

we detail the technical specifications, which will be further explained in the Design Solution 

section of the report. 

  

2.1 Background 

Our research extends Dr. Khurshid’s work on verifying data structures with machine learning 
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models produced in A Study of Learning Data Structure Invariants Using Off-The-Shelf Tools 

[1]. In the original study, off-the-shelf machine learning models were trained and tested to 

classify types of data structures with certain structural invariants. An invariant of a data 

structure is a property about the structure’s underlying design and functionality which 

remains the same regardless of how data are added, removed, or modified. An ML model is 

both a data structure and a corresponding algorithm which, together, allow computers to 

“learn” how to quickly and correctly make desired predictions given large sets of data. A 

model is “off-the-shelf” if it has already been fully implemented and published for public use, 

usually in a software library. In the study [1], the researchers use Korat, a software tool that 

generates a vectorized form of all valid and invalid data structures for a given invariant and 

size specifications, to create a dataset for a small subset of their intended invariants. Then, the 

researchers use the dataset to develop and tune a library of off-the-shelf machine learning 

models for each invariant. As a result, the study [1] found that off-the-shelf ML models can 

quickly learn properties of data structures with high accuracy.  

 

2.2 Project Goals 

For our senior design project, our team expanded this work [1] by creating ML models that 

validate graph invariants. Specifically, we focused on properties of data structures that 

represent directed graphs. Using the ML models we created, our team additionally explored 

the applications of the models in standard testing practices. The completion of our project is 

defined by the fulfillment of the following goals: the project should determine the learnability 

of graph invariants with ML models and employ the ML models to a software testing 

strategy.  

 

To fulfill the first goal, determining the learnability of graph invariants, our team mimicked 

the methodology in the original study [1] to create data in Korat as well as train and test ML 

models for five new graph invariants. At the end of the process, we graded the efficiency of 

each ML Model and compiled a list of the best ML Model for each invariant. Our team 

generated a list of highly accurate ML Models based on the processes described in A Study of 
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Learning Data Structure Invariants Using Off-The-Shelf Tools [1]. However, after further 

digging, we also discovered weaknesses in the models resulting from implicit biases within 

the data generation used in the original study. Still, we consider the first goal successfully 

completed because our evaluation of the advantages and shortcomings for the models in this 

paper will help direct further research in learning data structures using machine learning. 

 

For the second goal, our team implemented the ML Models in a typical testing suite, JUnit, to 

explore the benefits of using the models for invariant validation in practice. Our team 

employed the ML models to verify data structures in a program as part of a runtime-check or 

unit tests for a simple graph generator Java project. We explored the tools needed to export 

the off-the-shelf models into JUnit, a widely used testing suite for Java applications in 

industry, and measured the time and memory efficiency of the tests with ML models. We 

consider the second goal successfully accomplished because we identified benefits and 

drawbacks of implementing ML Models for data structure verification in JUnit. 

 

2.3 Deliverables 

In order to meet the above goals, our team completed three deliverables -- a GitHub 

Repository, an integration of the ML Models in a JUnit test, and the Final Paper. The GitHub 

Repository deliverable holds the code to create the graph invariants, the vectorized data, and 

the ML model code. By storing the data generation code, the data, and the models, our 

research on graph invariants can be easily recreated and built upon for further research by Dr. 

Khurshid and his team. The integration illustrates a small use case on how the ML models 

trained to validate invariants can be applied to a common software testing system. In this 

paper, the last deliverable, we document all the methodologies used to create the data, train 

and test the models, and create the JUnit testing integration. This paper is the most important 

deliverable because here we evaluate the strengths and weaknesses of our system design to 

create and integrate ML Models for invariant verification. Further, we suggest improvements 

and identify points for further research. In Figure 1 below, we outline the technical 

specifications for the deliverables that will each be comprehensively explained in the next 

4 



section of this report. 

Table 1. Technical Specifications for Deliverables Table 

Deliverable Technical Specifications 

GitHub Repository ● Java Files with RepOk methods For 
Data Generation 

● Zip Files of Binary Data Used 
● Python Files with ML Models 
● Excel Spreadsheet with Metrics 

Evaluating Models 
● All Files described in the JUnit 

Testing Integration 

JUnit Testing Integration ● .pmml Files of ML Models 
● JUnit Test File with Methods Using 

ML Models for Verification 
● Generic Java Graph Class for Testing 

Final Paper ● Documentation of Data Generation 
Method 

● Documentation of ML Model 
Generation 

● Evaluation of ML Models 
● Evaluation of ML Models Integrated 

in JUnit Testing 

  

3.0  DESIGN SOLUTION 

Our System Design is divided into four modules: Data Generation, Machine Learning 

Models, Integrated Testing Tool, and this Final Paper. These modules are graphically outlined 

in Figure 1. This section describes the manner in which the modules are related by using the 

deliverables of preceding modules as inputs. Additionally, we cover the process and design 

decisions for each deliverable within the modules.  
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Figure 1. System Design Diagram 

 

3.1 Data Generation 

The purpose of the Data Generation module is to create sets of vectorized data structures to be 

used for training and testing the ML models. This module has three deliverables: the Java 

RepOk methods for structuring the generated data, the Python scripts for parsing and splitting 

the data, and a GitHub Repository for organizing and storing all of the data. 

 

3.1.1 Java RepOk Methods 

The first deliverable in the Data Generation module is a set of Java RepOk Methods. These 

methods allowed us to generate a vectorized dataset which represents valid and invalid 

possibilities of any given data structure. These methods are to be used as inputs to Korat, the 

software tool we used to automatically generate all, or often a pruned set of, valid and invalid 

instances of data structures. Korat achieves this by searching through the RepOk method’s 

code for lines and variables which evaluate to any one of multiple possibilities (usually true or 
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false, or a finite set of numbers), and then producing data structures for each possibility. The 

RepOk function is a necessary input for Korat, as it fully represents an invariant property of a 

data structure in the form of a boolean-returning method located within the Java class for that 

same data structure.  

 

Our team elected to use Korat to create our dataset of candidate vectors not only because of 

its use in the original study, but due to its effectiveness in helping us achieve every 

requirement of this module. An important benefit to using Korat is that it includes Java 

classes for many of the most commonly encountered data structures, such as Directed Graphs, 

Binary Trees, and Singly-Linked Lists. Furthermore, the Java classes themselves include 

several pre-existing RepOk methods for each of the data structures. Therefore, to create a 

complete dataset for many different invariants, we used the included classes within Korat and 

also used the existing methods as reference points in learning how to write the RepOk 

methods. Once our team finalized a set of graph invariants to be included in the final dataset, 

we wrote the RepOk methods for each invariant. Korat is based in Java, so the RepOk 

methods were easy to create for new data structures of increasing complexity. Furthermore, 

we found Korat to be the most commonly used data generation tool in several related works, 

which allowed our team to consult a wealth of documentation supporting Korat development, 

as well as a number of people with experience using Korat, who were useful to us as support 

throughout. 

 

We decided on five graph invariants -- contains self-loops, K-regularity, acyclicity, density 

(greater than 0.70), and contains exactly one root -- for our ML models to learn to verify. For 

this deliverable, our team wrote five RepOk methods that each verify one of these graph 

invariants. Each method takes a Directed Graph, as represented by the existing DAGNode 

class, as an input and returns its boolean classification in regards to the invariant. Our team 

successfully integrated these RepOk methods within Korat, and then used Korat to generate a 

dataset containing valid and invalid data structures of varying sizes for each invariant.  
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3.1.2 Python Scripts:  Parsing and Splitting 

In order to use the data generated with Korat to train and test the models, our team needed to 

manipulate the data by parsing it. We created a Python script to parse Korat’s output and 

generate datasets that were compatible with the ML models input format. Finally, we took the 

resulting dataset and split it into training and testing subsets using our splitting script. 

 

The splitting script begins by taking, as input, Korat’s command-line printed output, and 

parses the output as text, line by line. The raw output produced from Korat is a list of 

vectorizations of each data structure; i.e. each generated data structure is represented as an 

array (or “candidate vector”) corresponding to the data structure vector representation used 

internally within Korat. Furthermore, if any data structure from the list is also a valid structure 

per the invariant, Korat will display a “***” symbol next to the valid vector. For example, 

two lines of the output may appear as: 

 

   1,0,2,0,3,0,0,0*** 

1,0,2,3,0,0,0,0 

 

where the first line represents a tree data structure which possesses the connectedness 

invariant, and the second line is another tree which does not. These two lines correspond to 

the following train/test dataset matrices: 

 

   

 

where  and  are represented first as a Python matrix (i.e. list of lists) and list, respectively, 

then as Pandas Dataframes, then finally as a Numpy matrix and array, respectively. Note that 

Pandas and Numpy are both commonly used software packages in Python for data analysis 

and linear algebraic computations. Furthermore, valid vectors (i.e. the rows) in  are denoted 

with the target variable ; likewise invalid vectors are denoted as , as shown in the 
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 vector above. 

 

Using the previous  matrix and  vector as inputs, the splitting script randomly splits the 

data into testing and training disjoint subsets. More specifically, the script selects some 

percentage of the data for training the ML models (say 90%), and the remaining percentage 

percent (10%) for testing. The 90/10 split ratio is an optimal train/test ratio, as proven in the 

paper, A Study of Learning Data Structure Invariants Using Of-the-shelf Tools [1]. Using the 

numpy.random.choice Python library and this split as an input, the script randomly 

samples, with uniform probability distribution, 90% of the valid vectors for training, and the 

remaining 10% is then used for testing. In practice, a 90/10 split ratio is not always 

conceivable, typically due to efficiencies in generating data and training models. Knowing 

this information, we aimed to observe the efficacy of splitting the data with varying train/test 

ratios. In our final design solution, we used train/test ratios of both 10/90 and 50/50.  

 

The final product for the Python scripting deliverable are the two scripts for parsing and 

splitting, which have been uploaded to our GitHub repository.  

 

3.1.3 GitHub Repository with Persistent Data 

The final deliverable for this module is our GitHub Repository, which stores all of our 

generated, parsed, and labeled training and testing data, as well as code for both the Korat 

RepOk methods and, in later modules, the data pre-processing and model training and testing. 

It was important that the data remain constant, as we used it as input to various ML models 

through multiple iterations of training and testing, and during the comparison of models and 

their outputs. Therefore, it was crucial that we saved all data used, and that the data remained 

untouched after the completion of this module. 

 

3.2 Machine Learning Models 

Using the datasets from the Data Generation module, we trained a set of ML models to 

accurately predict a vectorized data structure’s validity per any given invariant in the Machine 

9 

https://www.codecogs.com/eqnedit.php?latex=y%0
https://www.codecogs.com/eqnedit.php?latex=X%0
https://www.codecogs.com/eqnedit.php?latex=y%0


Learning Models module. We focused on three types of ML models: Decision Tree, Support 

Vector Machine, and Neural Network. Though there are many different types of models 

which may have been chosen for this task, our team selected this narrow list for several 

reasons. These three models are among the most common and general types of models for 

ML classification. This gave us access to widely available tools and documentation for 

helping create, tune, and debug our models, as well as ample opportunity for comparison of 

our models’ performance. Additionally, there exist more ML models for classification which 

are closely related to one of these three. For example, if our Decision Tree model performs as 

the best classifier of the three for a given invariant, further work might consider exploring 

models such as Random Forests and Gradient Boosting, which are more advanced 

architectures of Decision Trees. The generality of each model means any related models are 

likely to be more advanced, and may offer better performance. Lastly, our small set of models 

is diverse so each model’s architecture and algorithm is significantly different from one 

another, as are those of any derivative models. This allowed us to maximize performative 

capability across all models that our team explored. 

 

We compiled a list of the aforementioned three models as well as possible future additions in 

Table 1. We trained and tested the three required types of models using the datasets from the 

Data Generation module, and then analyzed each ML Model’s results. To complete this 

process, we used two files that are included in our GitHub deliverable: Python notebooks of 

trained models and a table of ML model evaluation metrics. 

 

Table 2. Machine Learning Models 

Model Name/Type Library Category Inclusion in final 
report 

Decision Tree Scikit Decision Tree 
Classifiers 

Required 

Random Forest Scikit Decision Tree 
Classifiers 

Optional 
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Gradient Boosting Scikit Decision Tree 
Classifiers 

Optional 

Adaboost Scikit Decision Tree 
Classifiers 

Optional 

Support Vector 
Machine 

Scikit Support Vector 
Machines 

Required 

Multi-layer perceptron Scikit, 
Keras/Tensorflow 

Neural Networks Required 

Convolutional Keras/Tensorflow Neural Networks Optional 

 

3.2.1 Python Notebooks of Trained ML Models 

Our first deliverable for this module is the set of off-the-shelf ML models that our team built 

and trained using Python. Each of the models is imported from either the Scikit Python library 

or the TensorFlow library, as seen in Table 1. We created one Jupyter Notebook, a Python 

interface commonly used for collaboration, for each ML Model such that in every Notebook 

there is one trained model for each data structure. This model reads a data structure from the 

testing subset and accurately predicts whether the data structure holds the specified invariant 

properties. In both the Scikit and Keras machine learning frameworks, the entire list of data 

structure samples designated for training is passed to the model. The model tries to predict if 

the invariant properties hold for each sample in the list, and when its predictions are wrong, 

each model adjusts its internal tools and parameters that it used for that prediction. Each 

model has a different algorithm and approach for generating its predictions; however, the 

general intention of the “learning” phase produces the same result, a trained model to classify 

if a vectorized data structure meets the criteria of an invariant or not. Once all of the models 

were trained, we exported the Jupyter Notebooks as executable Python files to use in the 

Integrated Testing Tool module.  

 

3.2.2 Charts of ML Model Evaluation Metrics 

Our team created a series of charts of Table of Machine Learning Evaluation Metrics used to 

evaluate the efficacy of each of the models at predicting each data structure. The metrics we 
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explored to evaluate each model are listed below, and the full, expanded chart with greater 

detail about each metric has been provided in Table 4 in Appendix F. 

 

● Binary Cross Entropy Loss 

● True Positive 

● False Positive 

● True Negative 

● False Negative 

● Accuracy 

● Precision 

● Recall 

● True Positive Rate 

● False Positive Rate 

● Receiver Operator Characteristics- Area Under Curve 

● F1 Score 

 

For each graph invariant, we computed the metrics for every trained model. This included 

varying train/test splits for each model. Furthermore, we also varied the distribution of 

valid/invalid data points in our datasets, with one data set consisting of a 50-50 split, and 

another consisting of the natural distribution of the invariant’s data. Table 2 is an example 

chart (condensed for clarity) for one graph invariant. Each metric was used to understand how 

the models performed. Using these metrics, our team determined the best ML model types to 

predict the validity for each data structure, and we used the best performing ML model types 

in the Integrated Testing Tool module.  

 

Table 3. Metrics to Assess ML Models (condensed) 

Models 
Train/Test Split 

Metrics 

MSE BCEL Accuracy AUC Precision ... 

Decision Tree 
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10/90: 

Equal 
(invalid/valid) 

      

Random 
(invalid/ valid) 

      

50/50: 

...       

Support Vector Machine 

...       

Multi-Layer Perceptron 

...       

 

3.3 Integrated Testing Tool 

The Integrated Testing Tool module uses the trained ML models for data structure 

verification to demonstrate a potential application in a runtime testing or unit testing 

environment. In this tool, the ML models are integrated into a Java Unit Testing suite which 

uses models to validate data structures in each of its tests as if the models were standard 

algorithms implemented in Java. Our team chose the most accurate and efficient ML model 

types to use based on the Chart of Machine Learning Evaluation Metrics deliverable from the 

ML Models module. The Integrated Testing Tool module has two deliverables: JUnit Test 

Files with our trained ML Models and a Chart of Runtime and Memory-Use for JUnit Tests to 

compare the time and memory efficiency of the tests with and without the ML Models. 

 

3.3.1 JUnit Test Files 

Our first deliverable, the JUnit test files, verify complex data structures in a Java program at 

runtime. Our team chose to use JUnit because it is a widely used testing suite in industry, it is 

written in a popular language (Java), and the content and execution of the program being 

tested by JUnit tests is arbitrary as long as the program is written in Java. In order to use the 

trained ML models from the ML Model module, we exported the models from the Python 

notebooks as executable Python files and added the files to the testing directory.  
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We wrote one JUnit test file for each invariant/model pair. Each file consists of a set of 

testing methods and the exported model wrapped in a Java method. Each testing method 

creates an example of a data structure that either does or does not meet the criteria for the 

given invariant and then confirms that the model has properly classified that data structure. 

Additionally, we included a Graph class for building the example graphs and a method that 

converts an instance of the Graph class into a candidate vector so it can be used as an input to 

the model. 

 

3.3.2 Chart of Runtime and Memory-Use for JUnit Tests 

Additionally for the Integrated Testing Tool module, our team created a chart containing time 

and space complexity metrics for the JUnit tests using the ML Models. We collected the 

memory and time use for each JUnit test method running within the JUnit test files. While we 

had previously hoped to compare our metrics to standard Java testing methods, we 

determined that this comparison would be trivial due to the limitations of our models. 

Standard methods, such as recursive or brute force methods, have complexities that increase 

with the size of the graph being tested. Our models are trained on small graphs (i.e. less than 7 

nodes), and therefore our time and space complexities are very small. Although we did not 

directly compare our results to standard methods, we did record and analyze our results in a 

chart (template shown in Table 3), as well as make recommendations for future extensions of 

our project.  

 

Table 4. Template for Chart of Runtime and Memory-Use for JUnit Tests 

Invariant Model Execution Time Memory Use 
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3.4 Final Paper 

This Final Paper, the last module of our design solution, summarizes and analyzes the results 

of our entire system. Because our project is research-based, it is important to thoroughly 

document the process of our systems so that future researchers may reproduce, and hopefully 

extend, our results. Therefore, we made sure to include the data generation methodology, ML 

model generation methodology, and process for building the Integrated Testing Tool in this 

final paper. Additionally, we will use this paper to communicate our final evaluation of the 

potential efficacy of ML data structure verification in a testing tool. The ML Model 

Evaluation Metric Chart from the ML Models module and the Chart of Runtime and 

Memory-Use for JUnit Tests from the Integrated Testing Tool module will serve as the data 

to support the final evaluation. 

 

4.0  DESIGN IMPLEMENTATION 

With our system design solution thoroughly crafted, our team began to delegate and complete the 

implementation of our system. Throughout our implementation, our team encountered a number 

of obstacles which continuously challenged certain expectations of the project going forward. 

We discuss all the challenges and their results for each of the system modules. 

 

4.1 Modified Invariants 

In the early phases of our project, we changed the graph invariants from complex properties (e.g. 

bipartiteness, identifying a tree, planar) to simpler properties like “does the graph contain a 

cycle?”. The complicated invariants contain significantly fewer valid graphs as compared to less 

stringent invariants. So, the ML models could not accurately learn the complex invariants 

because there were not enough graphs that met the invariants in the Korat data sets. By contrast, 

the simpler invariants contained thousands of valid graphs in the data. Our team decided to train 

the ML models on simpler and crucial invariants -- contains self-loops, K-regularity, acyclicity, 
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density (greater than 0.70), and contains exactly one root -- so we would not have to sacrifice the 

accuracy of our ML models. 

 

4.1.1 Problem 

Although our initial design proposed testing for complex graph properties such as planarity and 

bipartiteness, we discovered that the data sets for complicated invariants did not contain enough 

valid graphs to accurately train ML models. Our team was excited to automate the validation of 

sophisticated graph properties with our ML models because many algorithms rely on complex 

graph structures. However, after writing the appropriate RepOk methods for these properties and 

integrating them into Korat, we found that the datasets were large but contained very few valid 

samples. For example, one invariant we tested was checking if a graph was a tree. For a graph of 

6 nodes, there exist only 20 valid trees because trees have very strict definitions. With only 20 

valid trees, training an ML model would be pointless because it would be easier to just manually 

check if the graph was one of the few possible trees. Although we could have increased the 

number of nodes on the graphs to get more valid possibilities, the larger graphs produced 

exponentially more invalid graphs and our personal machines were not able to produce data sets 

for graphs larger than four to five nodes. So, our group had to reconsider the complexity of the 

invariants we wanted to test. 

 

4.1.2 Solution 

Although complex invariants produced invaluable data sets, our team discovered that by 

breaking down the complicated invariants into simpler ones we could create beneficial data sets 

and use multiple ML models to check for more stringent properties. Some complex invariants 

can be expressed as the conjunction of many simple invariants. So, difficult graph properties can 

be tested by running the graph through each model for the simple invariants. If all models return 

true, the complex invariant holds for the given graph. For example, one invariant of a regular tree 

is that it can only contain one root. So, we developed an ML model that automatically checks if a 

graph has one root. If the output of the ML model checking the one root invariant is false, then 

we can assume that the graph is not a regular tree, which is useful information for many software 
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engineering problems. Our team also improved the accuracy of our ML models by using 

uncomplicated invariants because the simpler properties allowed for more positive/valid samples 

in the output from the data generation phase of our project. Given more positive samples, we 

could more accurately train the ML models, which led to more promising metrics for the models 

such as accuracy, precision, and false positive rate. Thus, our team developed a solution that 

allowed us to still check for some complex invariants and create valuable data sets for ML model 

training and testing. 

 

4.2 Modified ML Model Types 

Our team encountered a number of challenges during the completion of the ML Models module. 

The results of these encounters were changes to our project goals and schedule for the rest of this 

module’s implementation. One example is our team's initial intention of using a wider range of 

ML models. However, as we implemented the ML Models module, it became clear we would 

need a smaller, yet still representative list of models with which to train using the invariants.  

 

4.2.1 Problem 

Initially, we wanted to cover a longer list of ML models. However, our team eventually 

concluded that, for the scope of this project, it was unfeasible to train every model we initially 

considered. Furthermore, not all of the models were well suited towards the nature of this 

project’s data structure data, like Convolutional Neural Networks or Simple Regression. The full 

list of models initially considered is shown in Table 2 in section 3.2.  

 

An issue that our team encountered during model training was related to performance of the 

Support Vector Machine (SVM) model. Given the nature of the SVM’s hyperplane-based 

learning algorithm, the SVM suffers from longer training times and larger memory requirements 

than the other included models. 

 

Finally, due to the invariants being easily learned by the ML Models, we decided to devote less 

project resources to training and tuning individual models. We were able to train our models on a 
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large number of datasets and with a variety of train/test splits, so this was not necessarily a 

problem. Nevertheless, it involuntarily caused an unexpected redistribution in the allocation of 

our team’s resources such as time and computing power.  

 

4.2.2 Solution 

Our team's need for a reduced set of ML models led us to examine several possible solutions. We 

ended up focusing on three specific models: Decision Tree, SVM, and Neural Network. This 

decision was motivated by the wide use of these specific models in industry. These models are 

also greatly representative of their respective algorithm classes, so discluding some models did 

not completely remove those learning algorithms’ characteristics from the training set. 

 

Another change we made in our implementation was that we did not tune the hyperparameters of 

our models. Originally, we had planned on tuning the hyperparameters of the models for better 

accuracy. However, the untuned versions of these models ended up being more than enough to 

train on the different invariants, as many of the graph properties were easily learnable by the ML 

models. In deciding not to attempt hyperparameter tuning, we instead focused on running more 

tests on our RepOk methods, the Integrated Testing Tool module, and the full system end to end. 

We spent more time on training more models with the increasingly abundant data being 

produced by Korat. We spent much of our tuning/testing time on a variety of datasets and trials. 

For one model and one invariant, we ran three trials per each of the four different data 

configurations. This process resulted in 12 test runs per model, and totaled 36 for each invariant. 

 

We also experimented more with feature engineering in efforts to study how the models 

performed differently for each new set of features. One example is training models with the 

graph representation as vectors directly from Korat, or with graphs represented more typically as 

adjacency matrices. 

 

As previously mentioned, SVM in general takes longer to train than many other off-the-shelf 

models. Our team found that to be true in our experience implementing this module, where SVM 
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suffers from a factorial order of input space complexity from Korat. Our team was forced to 

drastically limit our training capacities for the SVM in some cases, and in others we had to 

forego the training of the SVM altogether. This phenomena can be viewed in Appendix A, which 

contains the full table of ML model metrics. We decreased our train percent for SVM to as little 

as 1% of the data for very large datasets, and this still took very long to complete. There were 

several instances in which we were unable to run the SVM at all. Therefore, our results and 

models used in the Integrated Testing Tool both heavily rely on the other two model types. 

 

4.3 Modified Dataset Properties 

In order to improve the efficiency and accuracy of the ML models, we made two changes in how 

we produced the data used to train the models. First, we reduced the size of the training data for 

SVM models to decrease the time it took to train an SVM model. Second, we created training 

data that reflected the original distribution of valid to invalid vectors produced by Korat to closer 

replicate realistic data.  

 

4.3.1 Problem 

We were motivated to change our training data because we recognized two significant problems 

with the efficiency and accuracy of our ML models. The first problem regarded the efficiency of 

training the SVM Models. When we tried to train SVM Models on the same size datasets used to 

train the other models, the model would take hours to train or cause the computer to crash. 

Regarding the second problem with the ML model’s accuracy, we questioned if the models could 

be accurate with real data that naturally has a higher percentage of invalid vectors, since we were 

originally only training the models on data that had a 50/50 split of valid and invalid vectors. 

 

4.3.2 Solution 

In order to solve the problems with the efficiency and accuracy of the ML models, our team 

made two changes to the parameters of the training data. To increase the efficiency of training an 

SVM Model, we decided to reduce the size of the training dataset for SVMs. Thus, we trained 

the SVM data set with a 10/90 and a 1/99 train/test split; in contrast to the other models that are 
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trained on 10/90 and 50/50 train/test splits. This is why we were able to train the SVMs with 

different train/test splits with little cost to the accuracy of the models. We conduct an analysis of 

potential alternatives to this solution in Section 8.1.1 Creating Larger Datasets. To potentially 

increase the accuracy of the models, we replicated a training set on real data by using a natural 

random distribution of valid and invalid vectors. Our team decided to compare the ML models 

trained with balanced versus a random invalid/valid split. In many, but not all, invariants, the 

random distribution yielded a more accurate model.  

  

5.0  TEST AND EVALUATION 

Our team created and completed a series of methods to analyze the success of our system design 

and implementation. Like our approach to other aspects of this project, we have divided our 

testing and evaluation goals and strategies between each of our system’s three technical modules. 

In this section, we describe our procedures and discuss the quantitative results, achievements, 

and shortcomings of our implementation for each module. 

 

5.1 Data Generation Module 

Testing and evaluation of the Data Generation module primarily focused on Korat. Our team first 

verified the initial utility of Korat, then tested and validated our invariants and RepOk methods 

created for Korat, and finally inspected the new data generated from Korat for accuracy, all 

while completing and testing necessary alterations to our project’s code base. 

 

5.1.1 Method 

Since our testing process for this module was centered around Korat, it is worth noting that Korat 

has itself already undergone significant testing and evaluation prior to our usage of it. The 

original creators of it as well as other researchers have extensively used Korat for over a decade. 

Additionally, Korat’s creators created an extensive testing suite containing tests which cover all 

aspects and details of Korat’s functionality. Thus, our team focused our testing efforts of the 

Data Generation module on aspects of Korat which were important for our needs and goals. 
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First, our team aimed to understand and mitigate the difficulties that could unexpectedly arise 

while beginning to use and operate Korat. These difficulties include those specifically 

encountered during the first stages of our usage of Korat: installing the Korat library on 

machines, resolving any missing Java dependencies, assessing compatibility with our Java 

platforms, other system modules and components, and outstanding machine compatibility issues 

such as operating system requirements. Our ultimate goal was to achieve basic, active 

functionality of Korat before attempting any further analysis or modifications. 

 

Once we finally were able to use Korat, we began implementing the finalized collection of 

invariants. Testing our new invariants involved an extensive code review by at least two team 

members per invariant, as well as writing many unit tests to verify their accuracy. During the 

process of writing the RepOk methods, we discovered a few logical errors in the Korat library as 

well as areas which did not satisfy our system design requirements. Thus, our team would have 

to modify parts of the pre-written library code and then test them similar to our testing of newly 

written code. 

 

Finally, after making the necessary additions to the Korat codebase, our team had to evaluate the 

validity of the new data we could then generate. The highly technical and complex nature of how 

Korat explores and creates candidate vectors made testing the vectors’ validity tricky. We had to 

trust that Korat’s internal library code had been sufficiently tested, and were only able to further 

verify this by hand-inspecting a small, random few of the sometimes millions of vectors it 

produced. To aid in this inspection, we made use of a tool in Python which can take the vector 

representation of any directed graph and visualize it as a picture of circles for nodes and arrows 

for edges. We were then able to inspect the picture to verify that its structure agreed with that of 

its corresponding vector, as well as gain a better understanding of how Korat algorithmically 

explores the space of all possible candidate vectors. 
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5.1.2 Results 

The first goal of testing the Data Generation module was to achieve, and understand how to 

achieve, basic functionality of Korat across all users and systems. The result of this was 

successfully installing and demoing usage of Korat on both the Windows and MacOS operating 

systems. MacOS proved to be easier and faster, and facilitates an easier extension of Korat to 

Linux OS. There were challenges with installing and usage with Windows, which included 

proper setup and verification of system environment variables, difficulty installing and resolving 

the dependent libraries needed for Korat, and a lack of Unix-style development tools and 

practices such as a bash terminal. Another challenge we resolved was the Java-specific 

dependencies and requirements of Korat. Our team discovered that Korat requires usage with 

Java 1.5, whereas most of our team’s machines were configured for use with Java 1.7 or 1.8. We 

were able to install and revert back to the older version of Java, as well as restrict our future 

development within Korat to the restrictions of Java 1.5. 

 

Next, our team began writing, reviewing, and testing our RepOk methods for our five chosen 

invariants. This amounted to thoroughly reviewing at least 200 lines of code, as well as 

modifications to the code within Korat. Our team created five JUnit tests for each of our RepOk 

methods. All of the tests passed, and we were able to make use of these JUnit tests again for the 

Integrated Testing Tool module later on. 

 

With the RepOk methods successfully written and evaluated, our team began generating the 

candidate vectors for each invariant using Korat. Though Korat successfully generated the data 

thanks to our previous library installation and testing, we felt we had to verify the accuracy of the 

output data. To achieve this, we found a method to visualize any Korat-produced candidate 

vector. We used this method so that we could select a sample of vectors and visually inspect 

them for correctness. Below is an example of graph visualizations. 
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Figure 2. Visualizations of Korat candidate vectors 

 

We gathered a few important details about Korat while inspecting these visualizations. First was 

an error in Korat’s code which only allowed each node in a size-n graph to have a maximum of 

n-1 nodes. Second, the visualizations do not clearly show two features: repeated edges, and 

self-loops. This drew to our attention the fact that Korat could have repeated edges at all, 

something which not only is not common in real-world examples of graphs, but dramatically 

increases the runtime and memory of both Korat and model training. 

 

Finally, we evaluated the performance of Korat for each of our RepOk methods, as well as the 

memory and time metrics for Korat’s candidate vector generation. 

 

Table 5. Korat Runtime Metrics per Invariant 

Invariant Graph size Actual # valid 
from Korat 

Total graphs 
explored by 

Korat 

Time taken to 
generate graphs 

(sec.) 

Self-Loops 3 22 75 0.199 
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 4 3952 19402 5.471 

 5 651026 5235051 2397.863 

Acyclicity 5 4858 35464 8.176 

Regularity 4 100000 15246455 N/A 

Density 7 104268 2097152 1214.877 

Single Root 
Node 

3 1624 10699 2.037 

 

As shown in the table, as the size of a graph increases, there is a sharp increase in both the 

number of candidate vectors and runtime of Korat. Furthermore, the increases can be very high 

both for very small graph sizes and between any successive sizes. This is attributed to the 

exponential, and often factorial, orders of the formulas which model the runtime and memory 

metrics of Korat. The time and memory complexities of Korat’s vector exploration increase 

rapidly and without bound. 

 

5.1.3 Analysis 

Testing the Data Generation module overall allowed our team to identify and correct errors in 

our code implementation, reach better informed and quality design decisions, and ensure correct 

output from this module for use in the next. We created several useful tools that we then used for 

building and testing in our next two modules. Specifically, the method of visualizing graphs was 

useful for Feature Engineering in the ML Models module, and a greater understanding of Korat’s 

graph exploration algorithm helped us redesign our choices and implementations of invariants 

and subsequent training methods. We were also able to use modified versions of the JUnit tests 

in the Integrated Testing Tool module.  

 

5.2 ML Models Module 

Testing and evaluation for the Machine Learning Models module consisted of testing the data 

flow process with a smaller data set to full-fledged data collection to evaluate the machine 
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learning models themselves. In general, since the ML models are already tested/debugged as a 

part of their respective libraries, the focus of this section is more on our metrics/evaluation. 

 

5.2.1 Method 

Since our project used off-the-shelf ML models, we did not need to focus on the functionality of 

the models like we did in Korat, but rather we aimed to test and evaluate the accuracy of our 

trained models. Our initial goal for this module was to complete an end-to-end process, so we 

first tested the models on a smaller sample. The code we used for this initial run formed the basis 

for the rest of our machine learning models and metrics collection. From an evaluation 

standpoint, we needed to focus on how the models learn the invariants of our data. For this, we 

had a set of metrics (mentioned earlier) that we evaluated the models on. We ran three trials for 

each configuration and took the average for each of our listed metrics.  

 

5.2.2 Results 

In general, our results consisted of high accuracy and precision. Our full collection of results are 

contained within the tables in Appendix A. These results showed us that most of these invariants 

are easily learned by the machine learning models. When training on the engineered 50-50 data 

sets (labeled as Balanced) compared to the original distribution of valid/invalid graphs, we saw 

the 50-50 datasets often had an advantage in training. For instance, a Decision Tree model would 

be able to dedicate more of its pruning to isolating the positive cases when it does not have all of 

the negative cases to cipher through. In summary, when training on datasets with the distribution 

of valid/invalid determined by Korat, we ended up with more realistic results, albeit with slightly 

worse metrics compared to the balanced datasets. 

 

5.2.3 Analysis 

The goal of our analysis was to select one model per invariant to be used in the Integrated 

Testing Tool module. The main metric we referred to was the AUC-ROC score, because it 

adjusts for the distribution of data points. For example, if we are testing on data which is 90% 

negative, it would not make sense to give a score of 90% if a model is simply able to predict 
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negative for every data point. Hence, in general, we looked at the AUC-ROC score, but we also 

tried to have some diversity in the models we chose for each invariant, which is why we ended 

up choosing mostly Decision Tree models but also SVM and Neural Network. 

 

5.3 Integrated Testing Tool Module 

The Integrated Testing Tool module integrates the Data Generation module and the ML Models 

module to create an application that could be used outside of a research project. To determine 

whether or not we were successful in implementing the design of this module, we used various 

testing methods, including static analysis and JUnit tests.  

 

5.3.1 Method 

In order to create a test suite that mimics a real-world application, we exported our models into a 

Java project and added functionalities that would make them compatible with the Java syntax. To 

start this process, we opted to use adjacency matrices to represent the inputs to our test methods 

by creating a Graph class that implements an adjacency matrix to represent a directed graph. 

Then, we wrote a Java method that converts an instance of the Graph class into a candidate 

vector. This method is the first line of the method that wraps the exported model, so the model 

can recognize the format of the input. To test the conversion method, we created several example 

Graph objects and made sure that the output candidate vector depicted an identical graph. Next, 

we began populating our test suite with test methods. We created 5 classes, one for each graph 

invariant, and wrote around 6 test methods in each class. Each method creates a unique instance 

of the Graph class, sends it as a parameter to the trained model’s wrapper method, and then 

asserts that the model returns the correct boolean classification of the graph. We used static 

analysis and peer code review to verify that our test methods asserted the correct classification of 

the example graphs. Finally, we imported the models into our Java project. Since this module is 

fundamentally a test suite, once the models were imported, running the test suite was an effective 

and efficient way to test the functionality of the model within the wrapper method.  
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To get a better understanding of the success of our module, we measured the time and space cost 

of each model within their Java wrapper methods. To measure the execution time of each model, 

we iteratively ran the model with each graph input 5 times and then calculated the average time 

of the 5 iterations. We determined the space of each model by its file size.  

 

5.3.2 Results 

We successfully implemented a test suite that uses 5 different trained ML models to classify 

graphs based on 5 different graph invariants. This process included creating a method to convert 

an adjacency matrix into a candidate vector and test methods that exhibit the correctness of the 

imported model. We were also able to measure the time and space costs for testing each invariant 

with respect to their trained model. Table 6 shows the completed Chart of Runtime and 

Memory-Use for JUnit Tests.  

 

Table 6. Chart of Runtime and Memory-Use for JUnit Tests 

Invariant Model: 
Data distribution, train/test split 

Execution Time Memory Use 

Self-Loops Decision Tree:  
Balanced, 10/90 

36 ms 7 KB 

HasOneRoot Decision Tree: 
Full, 10/90 

31.2 ms 12 KB 

isRegular Support Vector Machine: 
Balanced, 10/90 

209 ms 1.2 MB 

isDense Neural Network: 
Full, 10/90 

150 ms 256 KB 

isAcyclic Decision Tree:  
Full, 50/50 

70.5 ms 130 KB 

 
5.3.3 Analysis 

We were able to meet specifications for this module. The time and space costs of using our 

models are feasible for a real-world application. Nevertheless, this could be attributed to the fact 

that our graph sizes are very small. With larger graphs, the size of the ML model may increase 

significantly. Since our team could not produce larger graphs due to the limitations of our 
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machines, we could not test how the ML models increased in size in relation to increasing graph 

sizes. Further, with larger graph sizes, the program will take a longer time to convert the graphs 

into a Korat vector. The function that converts the adjacency matrix into a Korat vector has a 

runtime of O(|V| * |E|), meaning the time to execute the function can potentially increase 

polynomially with respect to increases in the graph size input. Although the Integrated Testing 

Tool module met specifications on the surface, the implementation needs to be tested and refined 

further before it can be a useful tool in industry. In testing the Integrated Testing Tool module, 

we were primarily concerned with testing the efficiency of the ML models and not the accuracy. 

However, in Section 8.2.3, we present that the accuracy of the ML models is much lower with 

randomly generated data structures, instead of data structures produced by Korat. The false 

confidence on our ML models proves that further research needs to be done to develop more 

accurate models when dealing with real-world data before the ML models can be implemented in 

a testing tool. 

  

6.0  TIME AND COST CONSIDERATIONS 

Throughout the implementation of our project, there were points where we had to modify our 

project based on time or cost constraints. Our group made schedule adjustments early in the 

project to accommodate for two factors: trial and error time and the long time required to 

generate data. However, we did not have to adjust the project for any cost considerations, 

given that the research is completely software-based and that we ran the software on our 

personal machines. Therefore, we were able to complete our project in our budget of $0 and 

within our decided schedule. 

 

Initially, we had planned our schedule to sequentially work on the three modules, i.e., 

complete the Data Generation module for all of our invariants before moving onto the ML 

Models module, and so forth. However, when we discovered that the largest time constraint 

of our system was the data generation, we decided to only generate one invariant, self-loops, 

to implement and test the rest of our system design. By de-risking our entire system using the 

self-loops invariant, we were able to quickly identify and solve problems for every module. 
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Additionally, due to COVID-19 disrupting our planned schedule, our team slightly cut the 

scope of our project to exclude finding a real-world application for the Integrated Testing 

Tool module. The final step after creating the testing module would have been to make the 

testing suite into a package that we could implement into some sort of research or industry 

work. However, since our team lost a week and had to adjust to a new work-from-home 

schedule, we decided to cut the research/industry application. Instead, we created an arbitrary 

program that generated random graphs in the form of adjacency matrices, a commonly used 

data structure, and integrated the ML models to evaluate if the graphs met an invariant. 

 

It is worth noting that resources devoted to training ML models often do incur a financial 

cost. Many similar projects use a distributed computing approach where the training occurs 

over a server hosted by a company like Paperspace or Google Colab for a fee. This is done in 

order to access more powerful hardware for model training and, thus, decrease the overall 

train time. However, our team was able to complete our project by training the models on our 

own personal machines, which had enough computational power to complete the training 

within a reasonable time. 

 

7.0  SAFETY AND ETHICAL ASPECTS OF DESIGN 

Although our system design is abstract and research-focused, our implementation can be 

integrated and extended in future research, which could potentially lead to safety and/or ethical 

concerns. In fact, in the Integrated Testing Tool module, we created a testing methodology that 

can be easily applied to both industry and research projects. Therefore, our team has an ethical 

responsibility to truthfully evaluate any bias in the Data Generation module, the accuracy of the 

ML models, and any safety concerns for implementing the Integrated Testing Tool into a 

real-world system. 

 

Through our research, we discovered that Korat isomorphically prunes the resulting data set, 

causing a bias in the Data Generation Module. Since Korat was created as a test-input generation 

tool and not to generate data for ML, the implicit biases of using Korat as a data-generation tool 
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are not well defined. So, any team using ML models trained with Korat data needs to be 

cognizant that the biases can negatively affect the performance of the ML models in applications 

with real data. Still, Korat impressively explores the state space for data structures. So, as proved 

by our research, the test-input generation tool will be useful for further research in training ML 

models to verify data. However, alternative methodologies or changes to Korat may have to be 

implemented to reduce the bias of the data. 

 

In the ML Models module, our team meticulously measured the accuracy metrics of the ML 

models and extensively reported our evaluation process to preserve the integrity of the research. 

We implemented common scientific research methodologies like averaging the results of three 

trials for each metric listed in Appendix A. Table of  ML Model Metrics Results. Further, we 

described in detail the process and tools used to test the ML models in Section 5.2 ML Models 

Module. So, any future teams that wish to replicate or extend our research can interpret our 

results correctly. 

 

Finally, real-world systems making use of our Integrated Testing Tool module pose a safety 

concern because our system does not guarantee that the model will make an accurate prediction. 

Users should be aware of the risk of models not accurately predicting the validity of every 

possible input. Though the models successfully predict the majority of inputs, rarely do models 

predict every input, and thus there are a number of false positives and false negatives. Therefore, 

any systems that are critically dependent on accurate predictions at runtime should be aware of 

the false positives and negatives, and should use the regular RepOk method for validation at 

runtime.  

  

8.0  RECOMMENDATIONS 

In this section, we describe future extensions to our project and the alternative design decisions 

we could have made during the course of our project. Many of the future extensions rely on 

greater computational abilities, a service that was not readily available to us during our 
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implementation. Similarly, the alternative design decisions, while theoretically feasible, were not 

explored simply due to the time constraint of completion within a semester.  

 

8.1 Recommendations for Future Extensions 

The four recommendations we propose for groups trying to extend our work are in the areas of 

improving the base datasets, improving Korat’s implementation scheme, modifying the models, 

and finding additional applications.  

 

8.1.1 Creating Larger Datasets 

An idea for a further work is to generate larger data sets that lead to more well-trained machine 

learning models with the aid of supercomputers, and to explore different data generation 

techniques such as those based on model checking or symbolic execution. For our project, we 

used Korat as our data generation tool. Korat generates samples of a data structure subject to 

constraints provided in the RepOk method. We limited the size of our datasets on the order of a 

million samples since our personal computers could not handle much more due to both memory 

and time limitations. With access to a supercomputer, a researcher could generate datasets with 

billions of samples. A supercomputer would be able to not only generate these datasets quickly, 

but also train ML models on them quickly.  

 

Another stream of exploration could be in different data generation methods entirely. Methods 

based on model checking or symbolic execution may lead to different and interesting results. In 

short, Korat’s highly specific method of producing candidate vectors can greatly reduce the 

accuracy of models used in real-world applications. Therefore, other data generation techniques 

that output data with more robust algorithms may lead to different results when it comes to 

model accuracy and prediction metrics. 

 

8.1.2 Making Korat Improvements 

With more time to modify Korat, groups interested in further extensions should consider building 

new base data type classes that can easily implement other types of graphs, such as undirected 
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graphs, weighted graphs, randomly generated graphs, and hypergraphs. For our usage of Korat, 

we essentially treated it as a black-box; using it as is, without modifying its existing classes/data 

structures. We were able to write RepOk methods built around the basic data type classes already 

implemented in Korat. For instance, we were able to implement directed graphs in Korat using 

the pre-existing DAGNode class. Despite its name, this class can represent all directed graphs, 

not just Directed Acyclic Graphs (DAGs). However, we were unable to truly implement 

undirected graphs. In theory, we could have built an undirected graph class using DAGNodes by 

ensuring that for every edge from node U to node V, there was an opposite facing edge from 

node V to node U. However, this would have made analysis and implementation of undirected 

graphs complicated. So, improved or altogether new base data classes in Korat could lead to 

interesting results for more advanced graph types. 

 

8.1.3 Modifying ML Models 

In our study, we wanted to test the learnability of graph properties by machine learning models 

that were not tuned to do so. Although we were able to collect positive results, perhaps model 

accuracy could be improved by hyperparameter tuning these models as well as data 

transformation methods such as feature engineering. Improvements like this could be crucial if 

our tool were to be deployed in a setting where there is little tolerance for error, such as the 

healthcare or transportation industries. 

 

8.1.4 Finding Additional Applications 

Checking program and software correctness is an important research direction for the computer 

science community. That being said, finding large real-world systems that could benefit from 

automated program correctness tools, such as the one we developed, would provide further 

motivation for this stream of work. Some existing methods struggle with verifying complex 

properties such as the graph properties explored in this paper. Other works that follow our 

workflow have not been applied towards graph properties. Our work could have applications in 

automated program analysis tools as well as large software systems that are widespread in 

32 



industry. Given our compressed timeline, we were unable to find specific projects that use work 

similar to ours.  

 

8.2 Alternative Design and Implementation Decisions 

We concluded three key considerations for system redesigns or changes to our implementation 

process which would have either improved our project’s outcome or better equip our system for 

future use and research. These include: improving the model training and tuning process, training 

the models with libraries which are not only dependent on Python or any single language or 

system architecture, and evaluating biases within the domain of our project’s requirements, 

specifically Korat.  

 

8.2.1 Streamlining Model Creation 

A streamlined workflow to take a property through the data generation, machine learning, and 

integrated testing phase would have allowed us to scale up to include perhaps tens or hundreds of 

invariants. Though our team was successful in completing our ML Models module, there were a 

few challenges which both prevented us from achieving completion faster and possibly inhibited 

an improved system design. In particular, the time which it took to go from generating candidate 

vectors in Korat to exporting fully trained ML models was a rather lengthy and cumbersome 

process. The narrow scope of our design goals meant our team was able to afford a somewhat 

inefficient model training process. However, if the number of inputs from the Data Generation 

module, including data structures or invariants, ever increased, a more streamlined approach 

would be necessary. This would essentially be a new system design which would include: 

automatic creation (and recreation) of every type of ML model included within the scope, 

automatic feature engineering and included data transformations, and automatic training, testing 

with metrics reporting, and selection of the best performing models per invariant. These changes 

would greatly increase the ability to output more ML models and iterate through the entire ML 

Models module as necessary. 
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8.2.2 Make Model Training Platform Independent (Java) 

A redesign consideration that originated from the Integrated Testing Tool module was the idea of 

creating and using the trained ML models without the restriction of any environment or platform. 

We considered three implementation choices of this module. The first option relied too heavily 

on a user’s operating and file systems. For the second choice, though it averts the system reliance 

problem by using Java, it does not allow for this project to be easily used with non-Java software 

development environments. Many developers write entire systems in multiple languages which 

do not include Java, and even though the idea of JUnit testing frameworks is a staple of the Java 

platform, similar testing frameworks and requirements exist for many other languages. 

Therefore, our integrated tests would have to be re-written and re-compiled for the languages of 

any projects which do not use Java. A third alternative implementation choice would have been 

to host the functionality of all three modules on a server. Users could then run integrated tests by 

accessing our project’s code through an API REST endpoint, which is standard for many 

real-world systems, and would permit functionality regardless of choices of operating system or 

development language and environment. 

 

8.2.3 New model evaluation and re-training methods 

We discovered that though Korat is thorough in how it explores and isomorphically prunes the 

space of all possible graphs to explore, the isomorphic nature of its exploration actually limits the 

ability for a model trained from Korat’s data to perform well.  

 

Take, for example, the hasOneRoot invariant. Korat method of exploring all possible graphs with 

this property creates a set of valid graphs where the graphs, though are all pairwise isomorphic, 

all only have its last node set as the root node. In the case of a graph of size 4, the “3” node is 

always the root node. You can see an example of such a graph in the following diagram. 
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Figure 3. Diagram of isomorphic reassignment of nodes in a graph 

 

The graph visualized on the left satisfies the hasOneRoot invariant, with node “3” as the root 

node. Our team took all of the candidate vector graphs from Korat, and randomly reassigned the 

“names” or orderings of their nodes. In the example above, you can see how the nodes were 

reassigned:  the “3” node becomes “0”, which becomes the new root node. Note that the resulting 

graph is isomorphic to the original. This scenario, in which the orderings of a graph’s nodes is 

not known, is extremely common in the real world. However, in one case when we took a model 

trained to high accuracy on Korat’s output and tested it on the reassigned vectors, its predictive 

accuracy fell from 99.9% to 83%. This shows that the models, as they currently are, pose a safety 

risk if used for integrated tests in a real-world system. Therefore, the models should be trained on 

randomly reassigned output from Korat in order to greatly increase their predictive accuracy. 

 

9.0  CONCLUSION 

In conclusion, our team successfully accomplished our two main goals: determine the 

learnability of graph invariants with ML models and employ ML models to a software testing 

strategy. To answer the question posed by the first goal– “Are graph invariants learnable by ML 

Models?” –, we created the Data Generation module and ML Models module using the 

methodologies from A Study in Learning Invariants with Machine Learning. In the Data 

Generation and ML Models modules, we trained, tested, and evaluated the ML Models using 

data from Korat. The positive evaluation metrics for the ML Models indicate that graph 

invariants can be successfully learned by ML Models; thus, answering the question of the first 

goal. To fulfill the second goal of applying the ML models to a testing suite, we integrated the 

ML models into a JUnit testing suite in the Integrated Testing Tool module. The models in the 

JUnit test were lightweight and ran in trivial time with 100% accuracy on graphs created by 
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Korat. So, our system design satisfactorily proved the learnability of graph invariants by ML 

models and demonstrated a working application of the ML Models in a popular testing suite. 

 

Since our system design was built under the assumption that Korat data is unbiased and under the 

restriction of our computing power, further work must be done to evaluate and improve the 

system design with randomly produced data and larger graphs. Although our system performed 

nearly flawlessly when tested with data from Korat, our team discovered that the models 

performed significantly worse with graphs produced randomly. Due to time limitations, we were 

not able to explore if tuning the ML models trained on Korat data could improve their 

performance with randomly produced graphs. Although we measured that the time and memory 

usage of the ML Models was trivial in the evaluation of the Integrated Testing Tool module, we 

could not determine if the usage statistics would still be inconsequential when the graphs 

increased in size. We could not determine the time and memory costs of larger graphs, because 

our personal machines could not create models for graphs any larger than four to five nodes. So, 

our design implementation leaves two significant questions to be answered in future research on 

developing ML Models from Korat data. Can the ML Models trained from Korat data be tuned 

to have better accuracy on randomly produced graphs? And, will the ML Models for graphs 

larger than 4 to 5 nodes be efficient in a standard testing environment? We hope that our efforts 

will be useful for researchers as they set out to answer these questions. 
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