

On the Ability to Learn Graph Properties
Using Off-the-Shelf Machine Learning

Models

 Submitted To

Sarfraz Khurshid
Electrical and Computer Engineering Department

University of Texas at Austin

Prepared By

Rohan Garg

Emily Ginsburg
Michael Herrington

Tara Kuruvilla
Raghav Prakash

EE464 Senior Design Project

Electrical and Computer Engineering Department
University of Texas at Austin

Spring 2020

CONTENTS

TABLES.. v

FIGURES... vi

EXECUTIVE SUMMARY...

vii

1.0 INTRODUCTION.. 1

2.0 DESIGN PROBLEM... 2

2.1 Background... 2

2.2 Project Goals... 3

2.3 Deliverables... 4

3.0 DESIGN SOLUTION... 5

3.1 Data Generation.. 6

3.1.1 Java RepOk Methods... 6

3.1.2 Python Scripts: Parsing and Splitting... 8

3.1.3 GitHub Repository with Persistent Data... 9

3.2 Machine Learning Models... 9

3.2.1 Python Notebooks of Trained ML Models.. 11

3.2.2 Charts of ML Model Evaluation Metrics.. 11

3.3 Integrated Testing Tool...

13

3.3.1 JUnit Test Files.. 13

3.3.2 Chart of Runtime and Memory-Use for JUnit Tests.............................. 14

3.4 Final Paper...

15

4.0 DESIGN IMPLEMENTATION.. 15

4.1 Modified Invariants.. 15

4.1.1 Problem.. 16

ii

4.1.2 Solution.. 16

4.2 Modified ML Model Types.. 17

4.2.1 Problem.. 17

CONTENTS (Continued)

4.2.2 Solution.. 18

4.3 Modified Dataset Properties.. 19

4.3.1 Problem.. 19

4.3.1 Solution.. 19

5.0 TEST AND EVALUATION...

20

5.1 Data Generation Module... 20

5.1.1 Method... 20

5.1.2 Results.. 22

5.1.3 Analysis.. 24

5.2 ML Model Module.. 24

5.2.1 Method.. 25

5.2.2 Results.. 25

5.2.3 Analysis.. 25

5.3 Integrated Testing Tool Module.. 26

5.3.1 Method... 26

5.3.2 Results.. 27

5.3.3 Analysis.. 27

6.0 TIME AND COST CONSIDERATIONS... 28

7.0 SAFETY AND ETHICAL ASPECTS OF DESIGN.. 29

8.0 RECOMMENDATIONS... 30

8.1 Recommendations for Future Extensions... 31

8.1.1 Creating Larger Datasets... 31

8.1.2 Making Korat Improvements... 31

8.1.3 Modifying ML Models... 32

ii

8.1.4 Finding Additional Applications... 32

8.2 Alternative Design and Implementation Decisions.. 33

8.2.1 Streamlining Model Creation.. 33

8.2.2 Make Model Training Platform Independent (Java)............................. 33

CONTENTS (Continued)

8.2.3 New model evaluation and re-training methods..................................... 34

9.0 CONCLUSION... 35

REFERENCES.. 37

APPENDIX A – TABLE OF ML MODEL METRICS RESULTS.............................

A-1

iii

TABLES

1. Table 1. Technical Specifications for Deliverables

Table..17

2. Table 2. Machine Learning Models...22

3. Table 3. Metrics to Assess ML Models (condensed)..24

4. Table 4. Template for Chart of Runtime and Memory-Use for JUnit

Tests.......................26

5. Table 5. Korat Runtime Metrics per Invariant..34

6. Table 6. Chart of Runtime and Memory-Use for JUnit Tests..38

v

FIGURES

1. Figure 1. System Design Diagram...18

2. Figure 2. Visualizations of Korat candidate

vectors..34

3. Figure 3. Diagram of isomorphic reassignment of nodes in a graph................................45

vi

EXECUTIVE SUMMARY

In our project, our team uncovers the validity of using off-the-shelf machine learning (ML)

models, commonly used in industry, to validate graph data structures for testing purposes. Our

research aims to increase the efficiency of conventional software testing with trained machine

learning models. To prove the validity of implementing ML models as data structure checks, we

generate datasets of graphs with varying properties, train ML models to recognize invariants in

the graphs, and integrate an end-to-end product using the ML models in a JUnit test suite. With

our project, we were able to conclude that certain graph properties are easily learnable and that

these models can be packaged into useful runtime testing tools. In section one Introduction, we

outline the contents of the paper and describe the motivation of the research to explore

automation in testing.

Using the description of prior art as a model for our research, we discuss the goals and

deliverables for our project in section two Design Problem. Within section two, The Background

portion discusses the research paper, A Study of Learning Data Structure Invariants Using

Off-The-Shelf Tools [1], which outlines the system design that our project is based on. The Goals

section discusses the two overarching objectives of our project: to extend the study from this

paper and to test the efficiency of the research in a normal software testing workflow. To

complete these goals, we use the Project Specifications section to describe the three main

deliverables for our project, consisting of a GitHub Repository, an Integrated Testing Tool with

the ML models included in a software testing system, and this Final Paper.

In the third section Design Solution, we discuss all of our tangible work throughout the course of

the project, culminating with this paper describing the final system design solution. The design is

broadly broken down into three modules: Data Generation, Machine Learning, and Integrated

Testing Tool. Our Data Generation module describes all the pieces needed to generate data for

the five graph invariants or properties: contains self-loops, K-regularity, acyclicity, density

(greater than 0.70), and contains exactly one root. The tools used to produce the data incluse

vii

Korat, a test-input generation tool, to create the raw data, Python to parse the data from Korat,

and GitHub to store the clean data for the ML models. The Machine Learning Models module

then trains, tests, and evaluates the ML models using the data from the Data Generation module

with Python notebooks and the Scikit Python library. Finally, the most accurate models are

implemented in an end-to-end software testing flow within JUnit, a common software testing

suite, in the Integrated Testing Tool module.

In section four Design Implementation, we highlight three key areas where we faced obstacles

including the high complexity of our initial proposed invariants, overhead of data generation, and

selection of machine learning models. To combat these we reduced the complexity of our

invariants, reduced the number of machine learning models we were using, and modified certain

dataset properties to boost performance.

In the fifth section Test and Evaluation, we describe how we tested and evaluated our entire

design process and workflow. First, we tested Korat through some theoretical computations as

well as visualizations for the Korat graph output. Using the visualizations, we were able to notice

how Korat does not put repeated edges or self-loops. Additionally, we were able to test and see

how long Korat took for graphs of size n, where we were able to variable change n. Second, we

tested our Machine Learning Models module. We trusted that the machine learning models

themselves had been tested for accuracy and correctness since they were available through

credible library sources that millions of users use. What remained for us to test was our use of

the models and specifically how well they were learning these graph invariants. To do this we

used various model metrics such as accuracy, precision, recall, Log loss, and Area under Curve.

In general, our results consisted of high accuracy/precision. This showed us that most of these

invariants are easily learned by the machine learning models. Lastly, we had to test our

implementation of these ML models as integrated testing files. Essentially, we wrote a function

to convert adjacency matrices to candidate vectors and then ran those vectors through our models

to get a binary classification of that vector. To get a better understanding of the success of our

module, we measured the time and space cost of each model within their Java wrapper methods.

vii

Next, we describe our time and cost considerations in section six. Our budget was $0 since our

research was entirely software based without any need for specialized hardware. In terms of

time, we initially planned to work on all invariants concurrently. However, to reduce the number

of issues we faced for each invariant, we ran the oneRoot invariant through the entire workflow

before working on the other invariants. Due to COVID-19, we cut the scope of our project and

did not allocate any time towards finding a real-world software system that our tool could easily

be integrated into.

In Section seven Safety and ethical Aspects of Design, we describe potential ethical issues with

our system design. Since our project is a software testing research effort, there are no immediate

physical safety concerns to us as developers or to users. However, the users working with little

tolerance for error should know that our ML models may output incorrect answers because the

models are trained on biased data and our evaluation proved a 0.1% probability of inaccuracy.

In the penultimate section, we discussed recommendations for groups looking to extend our work

as well as alternative design decisions we could have made. We recommend that other groups

look into creating larger datasets with the help of supercomputers, improve upon Korat itself,

hypertune the ML models for specific applications, and find specific real-world software systems

for integration. Some alternative design decisions are making the model creation process more

streamlined making our testing tool independent of any specific language (in our case Java).

Further, we describe the faults and biases in Korat generation, recommending modifications in

both data generation and ML model evaluation.

Lastly, in section nine Conclusion, we summarize the findings from our research project and

guide future research in Korat generated ML models for data structure verification.

vii

1.0 INTRODUCTION

In our research, we are uncovering the validity of using off-the-shelf machine learning (ML)

models, a common public ML model used in industry, to validate data structures for testing

purposes. “Data structures invariants”, or properties, “play a key role in testing and verification”

[1]. Further, the automation of testing techniques is becoming increasingly more important.

Since software is becoming more pervasive in everyday life, industry will produce more code

and data. However, the public tolerance for software errors is not increasing proportionally to the

amount of code generated. Instead, due to society's increased dependence on technology, the

tolerance for error is decreasing. To decrease software errors in an environment with

exponentially growing codebases, our team is exploring the application of ML to automate data

structure invariant validation. We investigate, specifically, the process of generating graph

structures for testing and training models using a testing generator, Korat, as done in the paper, A

Study of Learning Data Structure Invariants Using Off-The-Shelf Tools [1]. We refer the reader

to Training binary classifiers as data structure invariants [2] by Molina et. al. for more

background on the problem and its motivations.

In the Design Problem section of this report, we provide further background of this original study

[1] that provides the foundational processes to generate data as well as train, test, and evaluate

ML models. We use the processes described in the paper [1] to evaluate the efficacy of using

ML models to validate graph invariants. Then, we test the integration of the models in a common

software testing suite, JUnit. In order to complete our two main goals, evaluating ML models

that validate graph invariants and integrating the models in a software testing process, our team

developed a system design with four modules. The technical deliverables and designs for the

four modules -- Data Generation, ML Models, Testing Integration, and Final Paper -- are

described in the Design Solution section of the Paper.

The implementation and evaluation of our system design is described in the Design

Implementation and Test and Evaluation sections of this paper. In the Design Implementation

section, we explain the problems we faced that led us to adjust our system design in the

1

following three ways: changing the invariants to simpler graph invariants, choosing a subset of

ML models, and adjusting the properties of our training data sets. In the Test and Evaluation

section, we describe the system's success in creating accurate models for graph invariants.

In the rest of the paper -- Time and Cost Considerations, Safety and Ethical Aspects of the

Design, and Recommendations -- we further evaluate our system design as well as our team’s

efficacy in implementing the design in a timely, cost-effective, and ethical manner. In the Time

and Cost Consideration section, we detail how we changed our project schedule to allow for

more time to test and iterate. In the Safety and Ethical Aspects section, we describe potential

ethical issues in implementing these ML models in industry. In the Recommendation section, we

reveal faults in the overall design that may have led to overconfidence of the model’s accuracy.

Further, we suggest potential solutions and implementation changes on the system to create a

more robust and accurate system in further research.

2.0 DESIGN PROBLEM

In this section, we cover the background of our project broken into three subsections:

Background, Goals, and Deliverables. The Background section summarizes the research

paper, A Study of Learning Data Structure Invariants Using Off-The-Shelf Tools [1], which

serves as the foundation of our project. The Project Goals section defines two goals-- to

extend Dr. Khurshid’s study and to test the efficiency of the research in a normal software

testing workflow -- that needed to be met for the project to be considered successfully

completed. Finally, the Deliverables section outlines and describes three Deliverables -- a

GitHub Repository, an integration of the models in a software testing system, and a Final

Paper -- that our team created this semester to meet the project goals. For each Deliverable,

we detail the technical specifications, which will be further explained in the Design Solution

section of the report.

2.1 Background

Our research extends Dr. Khurshid’s work on verifying data structures with machine learning

2

models produced in A Study of Learning Data Structure Invariants Using Off-The-Shelf Tools

[1]. In the original study, off-the-shelf machine learning models were trained and tested to

classify types of data structures with certain structural invariants. An invariant of a data

structure is a property about the structure’s underlying design and functionality which

remains the same regardless of how data are added, removed, or modified. An ML model is

both a data structure and a corresponding algorithm which, together, allow computers to

“learn” how to quickly and correctly make desired predictions given large sets of data. A

model is “off-the-shelf” if it has already been fully implemented and published for public use,

usually in a software library. In the study [1], the researchers use Korat, a software tool that

generates a vectorized form of all valid and invalid data structures for a given invariant and

size specifications, to create a dataset for a small subset of their intended invariants. Then, the

researchers use the dataset to develop and tune a library of off-the-shelf machine learning

models for each invariant. As a result, the study [1] found that off-the-shelf ML models can

quickly learn properties of data structures with high accuracy.

2.2 Project Goals

For our senior design project, our team expanded this work [1] by creating ML models that

validate graph invariants. Specifically, we focused on properties of data structures that

represent directed graphs. Using the ML models we created, our team additionally explored

the applications of the models in standard testing practices. The completion of our project is

defined by the fulfillment of the following goals: the project should determine the learnability

of graph invariants with ML models and employ the ML models to a software testing

strategy.

To fulfill the first goal, determining the learnability of graph invariants, our team mimicked

the methodology in the original study [1] to create data in Korat as well as train and test ML

models for five new graph invariants. At the end of the process, we graded the efficiency of

each ML Model and compiled a list of the best ML Model for each invariant. Our team

generated a list of highly accurate ML Models based on the processes described in A Study of

3

Learning Data Structure Invariants Using Off-The-Shelf Tools [1]. However, after further

digging, we also discovered weaknesses in the models resulting from implicit biases within

the data generation used in the original study. Still, we consider the first goal successfully

completed because our evaluation of the advantages and shortcomings for the models in this

paper will help direct further research in learning data structures using machine learning.

For the second goal, our team implemented the ML Models in a typical testing suite, JUnit, to

explore the benefits of using the models for invariant validation in practice. Our team

employed the ML models to verify data structures in a program as part of a runtime-check or

unit tests for a simple graph generator Java project. We explored the tools needed to export

the off-the-shelf models into JUnit, a widely used testing suite for Java applications in

industry, and measured the time and memory efficiency of the tests with ML models. We

consider the second goal successfully accomplished because we identified benefits and

drawbacks of implementing ML Models for data structure verification in JUnit.

2.3 Deliverables

In order to meet the above goals, our team completed three deliverables -- a GitHub

Repository, an integration of the ML Models in a JUnit test, and the Final Paper. The GitHub

Repository deliverable holds the code to create the graph invariants, the vectorized data, and

the ML model code. By storing the data generation code, the data, and the models, our

research on graph invariants can be easily recreated and built upon for further research by Dr.

Khurshid and his team. The integration illustrates a small use case on how the ML models

trained to validate invariants can be applied to a common software testing system. In this

paper, the last deliverable, we document all the methodologies used to create the data, train

and test the models, and create the JUnit testing integration. This paper is the most important

deliverable because here we evaluate the strengths and weaknesses of our system design to

create and integrate ML Models for invariant verification. Further, we suggest improvements

and identify points for further research. In Figure 1 below, we outline the technical

specifications for the deliverables that will each be comprehensively explained in the next

4

section of this report.

Table 1. Technical Specifications for Deliverables Table

Deliverable Technical Specifications

GitHub Repository ● Java Files with RepOk methods For
Data Generation

● Zip Files of Binary Data Used
● Python Files with ML Models
● Excel Spreadsheet with Metrics

Evaluating Models
● All Files described in the JUnit

Testing Integration

JUnit Testing Integration ● .pmml Files of ML Models
● JUnit Test File with Methods Using

ML Models for Verification
● Generic Java Graph Class for Testing

Final Paper ● Documentation of Data Generation
Method

● Documentation of ML Model
Generation

● Evaluation of ML Models
● Evaluation of ML Models Integrated

in JUnit Testing

3.0 DESIGN SOLUTION

Our System Design is divided into four modules: Data Generation, Machine Learning

Models, Integrated Testing Tool, and this Final Paper. These modules are graphically outlined

in Figure 1. This section describes the manner in which the modules are related by using the

deliverables of preceding modules as inputs. Additionally, we cover the process and design

decisions for each deliverable within the modules.

5

Figure 1. System Design Diagram

3.1 Data Generation

The purpose of the Data Generation module is to create sets of vectorized data structures to be

used for training and testing the ML models. This module has three deliverables: the Java

RepOk methods for structuring the generated data, the Python scripts for parsing and splitting

the data, and a GitHub Repository for organizing and storing all of the data.

3.1.1 Java RepOk Methods

The first deliverable in the Data Generation module is a set of Java RepOk Methods. These

methods allowed us to generate a vectorized dataset which represents valid and invalid

possibilities of any given data structure. These methods are to be used as inputs to Korat, the

software tool we used to automatically generate all, or often a pruned set of, valid and invalid

instances of data structures. Korat achieves this by searching through the RepOk method’s

code for lines and variables which evaluate to any one of multiple possibilities (usually true or

6

false, or a finite set of numbers), and then producing data structures for each possibility. The

RepOk function is a necessary input for Korat, as it fully represents an invariant property of a

data structure in the form of a boolean-returning method located within the Java class for that

same data structure.

Our team elected to use Korat to create our dataset of candidate vectors not only because of

its use in the original study, but due to its effectiveness in helping us achieve every

requirement of this module. An important benefit to using Korat is that it includes Java

classes for many of the most commonly encountered data structures, such as Directed Graphs,

Binary Trees, and Singly-Linked Lists. Furthermore, the Java classes themselves include

several pre-existing RepOk methods for each of the data structures. Therefore, to create a

complete dataset for many different invariants, we used the included classes within Korat and

also used the existing methods as reference points in learning how to write the RepOk

methods. Once our team finalized a set of graph invariants to be included in the final dataset,

we wrote the RepOk methods for each invariant. Korat is based in Java, so the RepOk

methods were easy to create for new data structures of increasing complexity. Furthermore,

we found Korat to be the most commonly used data generation tool in several related works,

which allowed our team to consult a wealth of documentation supporting Korat development,

as well as a number of people with experience using Korat, who were useful to us as support

throughout.

We decided on five graph invariants -- contains self-loops, K-regularity, acyclicity, density

(greater than 0.70), and contains exactly one root -- for our ML models to learn to verify. For

this deliverable, our team wrote five RepOk methods that each verify one of these graph

invariants. Each method takes a Directed Graph, as represented by the existing DAGNode

class, as an input and returns its boolean classification in regards to the invariant. Our team

successfully integrated these RepOk methods within Korat, and then used Korat to generate a

dataset containing valid and invalid data structures of varying sizes for each invariant.

7

3.1.2 Python Scripts: Parsing and Splitting

In order to use the data generated with Korat to train and test the models, our team needed to

manipulate the data by parsing it. We created a Python script to parse Korat’s output and

generate datasets that were compatible with the ML models input format. Finally, we took the

resulting dataset and split it into training and testing subsets using our splitting script.

The splitting script begins by taking, as input, Korat’s command-line printed output, and

parses the output as text, line by line. The raw output produced from Korat is a list of

vectorizations of each data structure; i.e. each generated data structure is represented as an

array (or “candidate vector”) corresponding to the data structure vector representation used

internally within Korat. Furthermore, if any data structure from the list is also a valid structure

per the invariant, Korat will display a “***” symbol next to the valid vector. For example,

two lines of the output may appear as:

 1,0,2,0,3,0,0,0***

1,0,2,3,0,0,0,0

where the first line represents a tree data structure which possesses the connectedness

invariant, and the second line is another tree which does not. These two lines correspond to

the following train/test dataset matrices:

where and are represented first as a Python matrix (i.e. list of lists) and list, respectively,

then as Pandas Dataframes, then finally as a Numpy matrix and array, respectively. Note that

Pandas and Numpy are both commonly used software packages in Python for data analysis

and linear algebraic computations. Furthermore, valid vectors (i.e. the rows) in are denoted

with the target variable ; likewise invalid vectors are denoted as , as shown in the

8

https://www.codecogs.com/eqnedit.php?latex=X%20%3D%20%5Cbegin%7Bbmatrix%7D%201%20%26%200%20%26%202%20%26%200%20%26%203%20%26%200%20%26%200%20%26%200%20%5C%5C%201%20%26%200%20%26%202%20%26%203%20%26%200%20%26%200%20%26%200%20%26%200%5Cend%7Bbmatrix%7D%0
https://www.codecogs.com/eqnedit.php?latex=%20y%20%3D%20%5Cbegin%7Bbmatrix%7D%201%20%5C%5C%200%20%5Cend%7Bbmatrix%7D%0
https://www.codecogs.com/eqnedit.php?latex=X%0
https://www.codecogs.com/eqnedit.php?latex=y%0
https://www.codecogs.com/eqnedit.php?latex=X%0
https://www.codecogs.com/eqnedit.php?latex=%20y%20%3D%201%20%0
https://www.codecogs.com/eqnedit.php?latex=%20y%20%3D%200%20%0

 vector above.

Using the previous matrix and vector as inputs, the splitting script randomly splits the

data into testing and training disjoint subsets. More specifically, the script selects some

percentage of the data for training the ML models (say 90%), and the remaining percentage

percent (10%) for testing. The 90/10 split ratio is an optimal train/test ratio, as proven in the

paper, A Study of Learning Data Structure Invariants Using Of-the-shelf Tools [1]. Using the

numpy.random.choice Python library and this split as an input, the script randomly

samples, with uniform probability distribution, 90% of the valid vectors for training, and the

remaining 10% is then used for testing. In practice, a 90/10 split ratio is not always

conceivable, typically due to efficiencies in generating data and training models. Knowing

this information, we aimed to observe the efficacy of splitting the data with varying train/test

ratios. In our final design solution, we used train/test ratios of both 10/90 and 50/50.

The final product for the Python scripting deliverable are the two scripts for parsing and

splitting, which have been uploaded to our GitHub repository.

3.1.3 GitHub Repository with Persistent Data

The final deliverable for this module is our GitHub Repository, which stores all of our

generated, parsed, and labeled training and testing data, as well as code for both the Korat

RepOk methods and, in later modules, the data pre-processing and model training and testing.

It was important that the data remain constant, as we used it as input to various ML models

through multiple iterations of training and testing, and during the comparison of models and

their outputs. Therefore, it was crucial that we saved all data used, and that the data remained

untouched after the completion of this module.

3.2 Machine Learning Models

Using the datasets from the Data Generation module, we trained a set of ML models to

accurately predict a vectorized data structure’s validity per any given invariant in the Machine

9

https://www.codecogs.com/eqnedit.php?latex=y%0
https://www.codecogs.com/eqnedit.php?latex=X%0
https://www.codecogs.com/eqnedit.php?latex=y%0

Learning Models module. We focused on three types of ML models: Decision Tree, Support

Vector Machine, and Neural Network. Though there are many different types of models

which may have been chosen for this task, our team selected this narrow list for several

reasons. These three models are among the most common and general types of models for

ML classification. This gave us access to widely available tools and documentation for

helping create, tune, and debug our models, as well as ample opportunity for comparison of

our models’ performance. Additionally, there exist more ML models for classification which

are closely related to one of these three. For example, if our Decision Tree model performs as

the best classifier of the three for a given invariant, further work might consider exploring

models such as Random Forests and Gradient Boosting, which are more advanced

architectures of Decision Trees. The generality of each model means any related models are

likely to be more advanced, and may offer better performance. Lastly, our small set of models

is diverse so each model’s architecture and algorithm is significantly different from one

another, as are those of any derivative models. This allowed us to maximize performative

capability across all models that our team explored.

We compiled a list of the aforementioned three models as well as possible future additions in

Table 1. We trained and tested the three required types of models using the datasets from the

Data Generation module, and then analyzed each ML Model’s results. To complete this

process, we used two files that are included in our GitHub deliverable: Python notebooks of

trained models and a table of ML model evaluation metrics.

Table 2. Machine Learning Models

Model Name/Type Library Category Inclusion in final
report

Decision Tree Scikit Decision Tree
Classifiers

Required

Random Forest Scikit Decision Tree
Classifiers

Optional

10

Gradient Boosting Scikit Decision Tree
Classifiers

Optional

Adaboost Scikit Decision Tree
Classifiers

Optional

Support Vector
Machine

Scikit Support Vector
Machines

Required

Multi-layer perceptron Scikit,
Keras/Tensorflow

Neural Networks Required

Convolutional Keras/Tensorflow Neural Networks Optional

3.2.1 Python Notebooks of Trained ML Models

Our first deliverable for this module is the set of off-the-shelf ML models that our team built

and trained using Python. Each of the models is imported from either the Scikit Python library

or the TensorFlow library, as seen in Table 1. We created one Jupyter Notebook, a Python

interface commonly used for collaboration, for each ML Model such that in every Notebook

there is one trained model for each data structure. This model reads a data structure from the

testing subset and accurately predicts whether the data structure holds the specified invariant

properties. In both the Scikit and Keras machine learning frameworks, the entire list of data

structure samples designated for training is passed to the model. The model tries to predict if

the invariant properties hold for each sample in the list, and when its predictions are wrong,

each model adjusts its internal tools and parameters that it used for that prediction. Each

model has a different algorithm and approach for generating its predictions; however, the

general intention of the “learning” phase produces the same result, a trained model to classify

if a vectorized data structure meets the criteria of an invariant or not. Once all of the models

were trained, we exported the Jupyter Notebooks as executable Python files to use in the

Integrated Testing Tool module.

3.2.2 Charts of ML Model Evaluation Metrics

Our team created a series of charts of Table of Machine Learning Evaluation Metrics used to

evaluate the efficacy of each of the models at predicting each data structure. The metrics we

11

explored to evaluate each model are listed below, and the full, expanded chart with greater

detail about each metric has been provided in Table 4 in Appendix F.

● Binary Cross Entropy Loss

● True Positive

● False Positive

● True Negative

● False Negative

● Accuracy

● Precision

● Recall

● True Positive Rate

● False Positive Rate

● Receiver Operator Characteristics- Area Under Curve

● F1 Score

For each graph invariant, we computed the metrics for every trained model. This included

varying train/test splits for each model. Furthermore, we also varied the distribution of

valid/invalid data points in our datasets, with one data set consisting of a 50-50 split, and

another consisting of the natural distribution of the invariant’s data. Table 2 is an example

chart (condensed for clarity) for one graph invariant. Each metric was used to understand how

the models performed. Using these metrics, our team determined the best ML model types to

predict the validity for each data structure, and we used the best performing ML model types

in the Integrated Testing Tool module.

Table 3. Metrics to Assess ML Models (condensed)

Models
Train/Test Split

Metrics

MSE BCEL Accuracy AUC Precision ...

Decision Tree

12

10/90:

Equal
(invalid/valid)

Random
(invalid/ valid)

50/50:

...

Support Vector Machine

...

Multi-Layer Perceptron

...

3.3 Integrated Testing Tool

The Integrated Testing Tool module uses the trained ML models for data structure

verification to demonstrate a potential application in a runtime testing or unit testing

environment. In this tool, the ML models are integrated into a Java Unit Testing suite which

uses models to validate data structures in each of its tests as if the models were standard

algorithms implemented in Java. Our team chose the most accurate and efficient ML model

types to use based on the Chart of Machine Learning Evaluation Metrics deliverable from the

ML Models module. The Integrated Testing Tool module has two deliverables: JUnit Test

Files with our trained ML Models and a Chart of Runtime and Memory-Use for JUnit Tests to

compare the time and memory efficiency of the tests with and without the ML Models.

3.3.1 JUnit Test Files

Our first deliverable, the JUnit test files, verify complex data structures in a Java program at

runtime. Our team chose to use JUnit because it is a widely used testing suite in industry, it is

written in a popular language (Java), and the content and execution of the program being

tested by JUnit tests is arbitrary as long as the program is written in Java. In order to use the

trained ML models from the ML Model module, we exported the models from the Python

notebooks as executable Python files and added the files to the testing directory.

13

We wrote one JUnit test file for each invariant/model pair. Each file consists of a set of

testing methods and the exported model wrapped in a Java method. Each testing method

creates an example of a data structure that either does or does not meet the criteria for the

given invariant and then confirms that the model has properly classified that data structure.

Additionally, we included a Graph class for building the example graphs and a method that

converts an instance of the Graph class into a candidate vector so it can be used as an input to

the model.

3.3.2 Chart of Runtime and Memory-Use for JUnit Tests

Additionally for the Integrated Testing Tool module, our team created a chart containing time

and space complexity metrics for the JUnit tests using the ML Models. We collected the

memory and time use for each JUnit test method running within the JUnit test files. While we

had previously hoped to compare our metrics to standard Java testing methods, we

determined that this comparison would be trivial due to the limitations of our models.

Standard methods, such as recursive or brute force methods, have complexities that increase

with the size of the graph being tested. Our models are trained on small graphs (i.e. less than 7

nodes), and therefore our time and space complexities are very small. Although we did not

directly compare our results to standard methods, we did record and analyze our results in a

chart (template shown in Table 3), as well as make recommendations for future extensions of

our project.

Table 4. Template for Chart of Runtime and Memory-Use for JUnit Tests

Invariant Model Execution Time Memory Use

14

3.4 Final Paper

This Final Paper, the last module of our design solution, summarizes and analyzes the results

of our entire system. Because our project is research-based, it is important to thoroughly

document the process of our systems so that future researchers may reproduce, and hopefully

extend, our results. Therefore, we made sure to include the data generation methodology, ML

model generation methodology, and process for building the Integrated Testing Tool in this

final paper. Additionally, we will use this paper to communicate our final evaluation of the

potential efficacy of ML data structure verification in a testing tool. The ML Model

Evaluation Metric Chart from the ML Models module and the Chart of Runtime and

Memory-Use for JUnit Tests from the Integrated Testing Tool module will serve as the data

to support the final evaluation.

4.0 DESIGN IMPLEMENTATION

With our system design solution thoroughly crafted, our team began to delegate and complete the

implementation of our system. Throughout our implementation, our team encountered a number

of obstacles which continuously challenged certain expectations of the project going forward.

We discuss all the challenges and their results for each of the system modules.

4.1 Modified Invariants

In the early phases of our project, we changed the graph invariants from complex properties (e.g.

bipartiteness, identifying a tree, planar) to simpler properties like “does the graph contain a

cycle?”. The complicated invariants contain significantly fewer valid graphs as compared to less

stringent invariants. So, the ML models could not accurately learn the complex invariants

because there were not enough graphs that met the invariants in the Korat data sets. By contrast,

the simpler invariants contained thousands of valid graphs in the data. Our team decided to train

the ML models on simpler and crucial invariants -- contains self-loops, K-regularity, acyclicity,

15

density (greater than 0.70), and contains exactly one root -- so we would not have to sacrifice the

accuracy of our ML models.

4.1.1 Problem

Although our initial design proposed testing for complex graph properties such as planarity and

bipartiteness, we discovered that the data sets for complicated invariants did not contain enough

valid graphs to accurately train ML models. Our team was excited to automate the validation of

sophisticated graph properties with our ML models because many algorithms rely on complex

graph structures. However, after writing the appropriate RepOk methods for these properties and

integrating them into Korat, we found that the datasets were large but contained very few valid

samples. For example, one invariant we tested was checking if a graph was a tree. For a graph of

6 nodes, there exist only 20 valid trees because trees have very strict definitions. With only 20

valid trees, training an ML model would be pointless because it would be easier to just manually

check if the graph was one of the few possible trees. Although we could have increased the

number of nodes on the graphs to get more valid possibilities, the larger graphs produced

exponentially more invalid graphs and our personal machines were not able to produce data sets

for graphs larger than four to five nodes. So, our group had to reconsider the complexity of the

invariants we wanted to test.

4.1.2 Solution

Although complex invariants produced invaluable data sets, our team discovered that by

breaking down the complicated invariants into simpler ones we could create beneficial data sets

and use multiple ML models to check for more stringent properties. Some complex invariants

can be expressed as the conjunction of many simple invariants. So, difficult graph properties can

be tested by running the graph through each model for the simple invariants. If all models return

true, the complex invariant holds for the given graph. For example, one invariant of a regular tree

is that it can only contain one root. So, we developed an ML model that automatically checks if a

graph has one root. If the output of the ML model checking the one root invariant is false, then

we can assume that the graph is not a regular tree, which is useful information for many software

16

engineering problems. Our team also improved the accuracy of our ML models by using

uncomplicated invariants because the simpler properties allowed for more positive/valid samples

in the output from the data generation phase of our project. Given more positive samples, we

could more accurately train the ML models, which led to more promising metrics for the models

such as accuracy, precision, and false positive rate. Thus, our team developed a solution that

allowed us to still check for some complex invariants and create valuable data sets for ML model

training and testing.

4.2 Modified ML Model Types

Our team encountered a number of challenges during the completion of the ML Models module.

The results of these encounters were changes to our project goals and schedule for the rest of this

module’s implementation. One example is our team's initial intention of using a wider range of

ML models. However, as we implemented the ML Models module, it became clear we would

need a smaller, yet still representative list of models with which to train using the invariants.

4.2.1 Problem

Initially, we wanted to cover a longer list of ML models. However, our team eventually

concluded that, for the scope of this project, it was unfeasible to train every model we initially

considered. Furthermore, not all of the models were well suited towards the nature of this

project’s data structure data, like Convolutional Neural Networks or Simple Regression. The full

list of models initially considered is shown in Table 2 in section 3.2.

An issue that our team encountered during model training was related to performance of the

Support Vector Machine (SVM) model. Given the nature of the SVM’s hyperplane-based

learning algorithm, the SVM suffers from longer training times and larger memory requirements

than the other included models.

Finally, due to the invariants being easily learned by the ML Models, we decided to devote less

project resources to training and tuning individual models. We were able to train our models on a

17

large number of datasets and with a variety of train/test splits, so this was not necessarily a

problem. Nevertheless, it involuntarily caused an unexpected redistribution in the allocation of

our team’s resources such as time and computing power.

4.2.2 Solution

Our team's need for a reduced set of ML models led us to examine several possible solutions. We

ended up focusing on three specific models: Decision Tree, SVM, and Neural Network. This

decision was motivated by the wide use of these specific models in industry. These models are

also greatly representative of their respective algorithm classes, so discluding some models did

not completely remove those learning algorithms’ characteristics from the training set.

Another change we made in our implementation was that we did not tune the hyperparameters of

our models. Originally, we had planned on tuning the hyperparameters of the models for better

accuracy. However, the untuned versions of these models ended up being more than enough to

train on the different invariants, as many of the graph properties were easily learnable by the ML

models. In deciding not to attempt hyperparameter tuning, we instead focused on running more

tests on our RepOk methods, the Integrated Testing Tool module, and the full system end to end.

We spent more time on training more models with the increasingly abundant data being

produced by Korat. We spent much of our tuning/testing time on a variety of datasets and trials.

For one model and one invariant, we ran three trials per each of the four different data

configurations. This process resulted in 12 test runs per model, and totaled 36 for each invariant.

We also experimented more with feature engineering in efforts to study how the models

performed differently for each new set of features. One example is training models with the

graph representation as vectors directly from Korat, or with graphs represented more typically as

adjacency matrices.

As previously mentioned, SVM in general takes longer to train than many other off-the-shelf

models. Our team found that to be true in our experience implementing this module, where SVM

18

suffers from a factorial order of input space complexity from Korat. Our team was forced to

drastically limit our training capacities for the SVM in some cases, and in others we had to

forego the training of the SVM altogether. This phenomena can be viewed in Appendix A, which

contains the full table of ML model metrics. We decreased our train percent for SVM to as little

as 1% of the data for very large datasets, and this still took very long to complete. There were

several instances in which we were unable to run the SVM at all. Therefore, our results and

models used in the Integrated Testing Tool both heavily rely on the other two model types.

4.3 Modified Dataset Properties

In order to improve the efficiency and accuracy of the ML models, we made two changes in how

we produced the data used to train the models. First, we reduced the size of the training data for

SVM models to decrease the time it took to train an SVM model. Second, we created training

data that reflected the original distribution of valid to invalid vectors produced by Korat to closer

replicate realistic data.

4.3.1 Problem

We were motivated to change our training data because we recognized two significant problems

with the efficiency and accuracy of our ML models. The first problem regarded the efficiency of

training the SVM Models. When we tried to train SVM Models on the same size datasets used to

train the other models, the model would take hours to train or cause the computer to crash.

Regarding the second problem with the ML model’s accuracy, we questioned if the models could

be accurate with real data that naturally has a higher percentage of invalid vectors, since we were

originally only training the models on data that had a 50/50 split of valid and invalid vectors.

4.3.2 Solution

In order to solve the problems with the efficiency and accuracy of the ML models, our team

made two changes to the parameters of the training data. To increase the efficiency of training an

SVM Model, we decided to reduce the size of the training dataset for SVMs. Thus, we trained

the SVM data set with a 10/90 and a 1/99 train/test split; in contrast to the other models that are

19

trained on 10/90 and 50/50 train/test splits. This is why we were able to train the SVMs with

different train/test splits with little cost to the accuracy of the models. We conduct an analysis of

potential alternatives to this solution in Section 8.1.1 Creating Larger Datasets. To potentially

increase the accuracy of the models, we replicated a training set on real data by using a natural

random distribution of valid and invalid vectors. Our team decided to compare the ML models

trained with balanced versus a random invalid/valid split. In many, but not all, invariants, the

random distribution yielded a more accurate model.

5.0 TEST AND EVALUATION

Our team created and completed a series of methods to analyze the success of our system design

and implementation. Like our approach to other aspects of this project, we have divided our

testing and evaluation goals and strategies between each of our system’s three technical modules.

In this section, we describe our procedures and discuss the quantitative results, achievements,

and shortcomings of our implementation for each module.

5.1 Data Generation Module

Testing and evaluation of the Data Generation module primarily focused on Korat. Our team first

verified the initial utility of Korat, then tested and validated our invariants and RepOk methods

created for Korat, and finally inspected the new data generated from Korat for accuracy, all

while completing and testing necessary alterations to our project’s code base.

5.1.1 Method

Since our testing process for this module was centered around Korat, it is worth noting that Korat

has itself already undergone significant testing and evaluation prior to our usage of it. The

original creators of it as well as other researchers have extensively used Korat for over a decade.

Additionally, Korat’s creators created an extensive testing suite containing tests which cover all

aspects and details of Korat’s functionality. Thus, our team focused our testing efforts of the

Data Generation module on aspects of Korat which were important for our needs and goals.

20

First, our team aimed to understand and mitigate the difficulties that could unexpectedly arise

while beginning to use and operate Korat. These difficulties include those specifically

encountered during the first stages of our usage of Korat: installing the Korat library on

machines, resolving any missing Java dependencies, assessing compatibility with our Java

platforms, other system modules and components, and outstanding machine compatibility issues

such as operating system requirements. Our ultimate goal was to achieve basic, active

functionality of Korat before attempting any further analysis or modifications.

Once we finally were able to use Korat, we began implementing the finalized collection of

invariants. Testing our new invariants involved an extensive code review by at least two team

members per invariant, as well as writing many unit tests to verify their accuracy. During the

process of writing the RepOk methods, we discovered a few logical errors in the Korat library as

well as areas which did not satisfy our system design requirements. Thus, our team would have

to modify parts of the pre-written library code and then test them similar to our testing of newly

written code.

Finally, after making the necessary additions to the Korat codebase, our team had to evaluate the

validity of the new data we could then generate. The highly technical and complex nature of how

Korat explores and creates candidate vectors made testing the vectors’ validity tricky. We had to

trust that Korat’s internal library code had been sufficiently tested, and were only able to further

verify this by hand-inspecting a small, random few of the sometimes millions of vectors it

produced. To aid in this inspection, we made use of a tool in Python which can take the vector

representation of any directed graph and visualize it as a picture of circles for nodes and arrows

for edges. We were then able to inspect the picture to verify that its structure agreed with that of

its corresponding vector, as well as gain a better understanding of how Korat algorithmically

explores the space of all possible candidate vectors.

21

5.1.2 Results

The first goal of testing the Data Generation module was to achieve, and understand how to

achieve, basic functionality of Korat across all users and systems. The result of this was

successfully installing and demoing usage of Korat on both the Windows and MacOS operating

systems. MacOS proved to be easier and faster, and facilitates an easier extension of Korat to

Linux OS. There were challenges with installing and usage with Windows, which included

proper setup and verification of system environment variables, difficulty installing and resolving

the dependent libraries needed for Korat, and a lack of Unix-style development tools and

practices such as a bash terminal. Another challenge we resolved was the Java-specific

dependencies and requirements of Korat. Our team discovered that Korat requires usage with

Java 1.5, whereas most of our team’s machines were configured for use with Java 1.7 or 1.8. We

were able to install and revert back to the older version of Java, as well as restrict our future

development within Korat to the restrictions of Java 1.5.

Next, our team began writing, reviewing, and testing our RepOk methods for our five chosen

invariants. This amounted to thoroughly reviewing at least 200 lines of code, as well as

modifications to the code within Korat. Our team created five JUnit tests for each of our RepOk

methods. All of the tests passed, and we were able to make use of these JUnit tests again for the

Integrated Testing Tool module later on.

With the RepOk methods successfully written and evaluated, our team began generating the

candidate vectors for each invariant using Korat. Though Korat successfully generated the data

thanks to our previous library installation and testing, we felt we had to verify the accuracy of the

output data. To achieve this, we found a method to visualize any Korat-produced candidate

vector. We used this method so that we could select a sample of vectors and visually inspect

them for correctness. Below is an example of graph visualizations.

22

Figure 2. Visualizations of Korat candidate vectors

We gathered a few important details about Korat while inspecting these visualizations. First was

an error in Korat’s code which only allowed each node in a size-n graph to have a maximum of

n-1 nodes. Second, the visualizations do not clearly show two features: repeated edges, and

self-loops. This drew to our attention the fact that Korat could have repeated edges at all,

something which not only is not common in real-world examples of graphs, but dramatically

increases the runtime and memory of both Korat and model training.

Finally, we evaluated the performance of Korat for each of our RepOk methods, as well as the

memory and time metrics for Korat’s candidate vector generation.

Table 5. Korat Runtime Metrics per Invariant

Invariant Graph size Actual # valid
from Korat

Total graphs
explored by

Korat

Time taken to
generate graphs

(sec.)

Self-Loops 3 22 75 0.199

23

 4 3952 19402 5.471

 5 651026 5235051 2397.863

Acyclicity 5 4858 35464 8.176

Regularity 4 100000 15246455 N/A

Density 7 104268 2097152 1214.877

Single Root
Node

3 1624 10699 2.037

As shown in the table, as the size of a graph increases, there is a sharp increase in both the

number of candidate vectors and runtime of Korat. Furthermore, the increases can be very high

both for very small graph sizes and between any successive sizes. This is attributed to the

exponential, and often factorial, orders of the formulas which model the runtime and memory

metrics of Korat. The time and memory complexities of Korat’s vector exploration increase

rapidly and without bound.

5.1.3 Analysis

Testing the Data Generation module overall allowed our team to identify and correct errors in

our code implementation, reach better informed and quality design decisions, and ensure correct

output from this module for use in the next. We created several useful tools that we then used for

building and testing in our next two modules. Specifically, the method of visualizing graphs was

useful for Feature Engineering in the ML Models module, and a greater understanding of Korat’s

graph exploration algorithm helped us redesign our choices and implementations of invariants

and subsequent training methods. We were also able to use modified versions of the JUnit tests

in the Integrated Testing Tool module.

5.2 ML Models Module

Testing and evaluation for the Machine Learning Models module consisted of testing the data

flow process with a smaller data set to full-fledged data collection to evaluate the machine

24

learning models themselves. In general, since the ML models are already tested/debugged as a

part of their respective libraries, the focus of this section is more on our metrics/evaluation.

5.2.1 Method

Since our project used off-the-shelf ML models, we did not need to focus on the functionality of

the models like we did in Korat, but rather we aimed to test and evaluate the accuracy of our

trained models. Our initial goal for this module was to complete an end-to-end process, so we

first tested the models on a smaller sample. The code we used for this initial run formed the basis

for the rest of our machine learning models and metrics collection. From an evaluation

standpoint, we needed to focus on how the models learn the invariants of our data. For this, we

had a set of metrics (mentioned earlier) that we evaluated the models on. We ran three trials for

each configuration and took the average for each of our listed metrics.

5.2.2 Results

In general, our results consisted of high accuracy and precision. Our full collection of results are

contained within the tables in Appendix A. These results showed us that most of these invariants

are easily learned by the machine learning models. When training on the engineered 50-50 data

sets (labeled as Balanced) compared to the original distribution of valid/invalid graphs, we saw

the 50-50 datasets often had an advantage in training. For instance, a Decision Tree model would

be able to dedicate more of its pruning to isolating the positive cases when it does not have all of

the negative cases to cipher through. In summary, when training on datasets with the distribution

of valid/invalid determined by Korat, we ended up with more realistic results, albeit with slightly

worse metrics compared to the balanced datasets.

5.2.3 Analysis

The goal of our analysis was to select one model per invariant to be used in the Integrated

Testing Tool module. The main metric we referred to was the AUC-ROC score, because it

adjusts for the distribution of data points. For example, if we are testing on data which is 90%

negative, it would not make sense to give a score of 90% if a model is simply able to predict

25

negative for every data point. Hence, in general, we looked at the AUC-ROC score, but we also

tried to have some diversity in the models we chose for each invariant, which is why we ended

up choosing mostly Decision Tree models but also SVM and Neural Network.

5.3 Integrated Testing Tool Module

The Integrated Testing Tool module integrates the Data Generation module and the ML Models

module to create an application that could be used outside of a research project. To determine

whether or not we were successful in implementing the design of this module, we used various

testing methods, including static analysis and JUnit tests.

5.3.1 Method

In order to create a test suite that mimics a real-world application, we exported our models into a

Java project and added functionalities that would make them compatible with the Java syntax. To

start this process, we opted to use adjacency matrices to represent the inputs to our test methods

by creating a Graph class that implements an adjacency matrix to represent a directed graph.

Then, we wrote a Java method that converts an instance of the Graph class into a candidate

vector. This method is the first line of the method that wraps the exported model, so the model

can recognize the format of the input. To test the conversion method, we created several example

Graph objects and made sure that the output candidate vector depicted an identical graph. Next,

we began populating our test suite with test methods. We created 5 classes, one for each graph

invariant, and wrote around 6 test methods in each class. Each method creates a unique instance

of the Graph class, sends it as a parameter to the trained model’s wrapper method, and then

asserts that the model returns the correct boolean classification of the graph. We used static

analysis and peer code review to verify that our test methods asserted the correct classification of

the example graphs. Finally, we imported the models into our Java project. Since this module is

fundamentally a test suite, once the models were imported, running the test suite was an effective

and efficient way to test the functionality of the model within the wrapper method.

26

To get a better understanding of the success of our module, we measured the time and space cost

of each model within their Java wrapper methods. To measure the execution time of each model,

we iteratively ran the model with each graph input 5 times and then calculated the average time

of the 5 iterations. We determined the space of each model by its file size.

5.3.2 Results

We successfully implemented a test suite that uses 5 different trained ML models to classify

graphs based on 5 different graph invariants. This process included creating a method to convert

an adjacency matrix into a candidate vector and test methods that exhibit the correctness of the

imported model. We were also able to measure the time and space costs for testing each invariant

with respect to their trained model. Table 6 shows the completed Chart of Runtime and

Memory-Use for JUnit Tests.

Table 6. Chart of Runtime and Memory-Use for JUnit Tests

Invariant Model:
Data distribution, train/test split

Execution Time Memory Use

Self-Loops Decision Tree:
Balanced, 10/90

36 ms 7 KB

HasOneRoot Decision Tree:
Full, 10/90

31.2 ms 12 KB

isRegular Support Vector Machine:
Balanced, 10/90

209 ms 1.2 MB

isDense Neural Network:
Full, 10/90

150 ms 256 KB

isAcyclic Decision Tree:
Full, 50/50

70.5 ms 130 KB

5.3.3 Analysis

We were able to meet specifications for this module. The time and space costs of using our

models are feasible for a real-world application. Nevertheless, this could be attributed to the fact

that our graph sizes are very small. With larger graphs, the size of the ML model may increase

significantly. Since our team could not produce larger graphs due to the limitations of our

27

machines, we could not test how the ML models increased in size in relation to increasing graph

sizes. Further, with larger graph sizes, the program will take a longer time to convert the graphs

into a Korat vector. The function that converts the adjacency matrix into a Korat vector has a

runtime of O(|V| * |E|), meaning the time to execute the function can potentially increase

polynomially with respect to increases in the graph size input. Although the Integrated Testing

Tool module met specifications on the surface, the implementation needs to be tested and refined

further before it can be a useful tool in industry. In testing the Integrated Testing Tool module,

we were primarily concerned with testing the efficiency of the ML models and not the accuracy.

However, in Section 8.2.3, we present that the accuracy of the ML models is much lower with

randomly generated data structures, instead of data structures produced by Korat. The false

confidence on our ML models proves that further research needs to be done to develop more

accurate models when dealing with real-world data before the ML models can be implemented in

a testing tool.

6.0 TIME AND COST CONSIDERATIONS

Throughout the implementation of our project, there were points where we had to modify our

project based on time or cost constraints. Our group made schedule adjustments early in the

project to accommodate for two factors: trial and error time and the long time required to

generate data. However, we did not have to adjust the project for any cost considerations,

given that the research is completely software-based and that we ran the software on our

personal machines. Therefore, we were able to complete our project in our budget of $0 and

within our decided schedule.

Initially, we had planned our schedule to sequentially work on the three modules, i.e.,

complete the Data Generation module for all of our invariants before moving onto the ML

Models module, and so forth. However, when we discovered that the largest time constraint

of our system was the data generation, we decided to only generate one invariant, self-loops,

to implement and test the rest of our system design. By de-risking our entire system using the

self-loops invariant, we were able to quickly identify and solve problems for every module.

28

Additionally, due to COVID-19 disrupting our planned schedule, our team slightly cut the

scope of our project to exclude finding a real-world application for the Integrated Testing

Tool module. The final step after creating the testing module would have been to make the

testing suite into a package that we could implement into some sort of research or industry

work. However, since our team lost a week and had to adjust to a new work-from-home

schedule, we decided to cut the research/industry application. Instead, we created an arbitrary

program that generated random graphs in the form of adjacency matrices, a commonly used

data structure, and integrated the ML models to evaluate if the graphs met an invariant.

It is worth noting that resources devoted to training ML models often do incur a financial

cost. Many similar projects use a distributed computing approach where the training occurs

over a server hosted by a company like Paperspace or Google Colab for a fee. This is done in

order to access more powerful hardware for model training and, thus, decrease the overall

train time. However, our team was able to complete our project by training the models on our

own personal machines, which had enough computational power to complete the training

within a reasonable time.

7.0 SAFETY AND ETHICAL ASPECTS OF DESIGN

Although our system design is abstract and research-focused, our implementation can be

integrated and extended in future research, which could potentially lead to safety and/or ethical

concerns. In fact, in the Integrated Testing Tool module, we created a testing methodology that

can be easily applied to both industry and research projects. Therefore, our team has an ethical

responsibility to truthfully evaluate any bias in the Data Generation module, the accuracy of the

ML models, and any safety concerns for implementing the Integrated Testing Tool into a

real-world system.

Through our research, we discovered that Korat isomorphically prunes the resulting data set,

causing a bias in the Data Generation Module. Since Korat was created as a test-input generation

tool and not to generate data for ML, the implicit biases of using Korat as a data-generation tool

29

are not well defined. So, any team using ML models trained with Korat data needs to be

cognizant that the biases can negatively affect the performance of the ML models in applications

with real data. Still, Korat impressively explores the state space for data structures. So, as proved

by our research, the test-input generation tool will be useful for further research in training ML

models to verify data. However, alternative methodologies or changes to Korat may have to be

implemented to reduce the bias of the data.

In the ML Models module, our team meticulously measured the accuracy metrics of the ML

models and extensively reported our evaluation process to preserve the integrity of the research.

We implemented common scientific research methodologies like averaging the results of three

trials for each metric listed in Appendix A. Table of ML Model Metrics Results. Further, we

described in detail the process and tools used to test the ML models in Section 5.2 ML Models

Module. So, any future teams that wish to replicate or extend our research can interpret our

results correctly.

Finally, real-world systems making use of our Integrated Testing Tool module pose a safety

concern because our system does not guarantee that the model will make an accurate prediction.

Users should be aware of the risk of models not accurately predicting the validity of every

possible input. Though the models successfully predict the majority of inputs, rarely do models

predict every input, and thus there are a number of false positives and false negatives. Therefore,

any systems that are critically dependent on accurate predictions at runtime should be aware of

the false positives and negatives, and should use the regular RepOk method for validation at

runtime.

8.0 RECOMMENDATIONS

In this section, we describe future extensions to our project and the alternative design decisions

we could have made during the course of our project. Many of the future extensions rely on

greater computational abilities, a service that was not readily available to us during our

30

implementation. Similarly, the alternative design decisions, while theoretically feasible, were not

explored simply due to the time constraint of completion within a semester.

8.1 Recommendations for Future Extensions

The four recommendations we propose for groups trying to extend our work are in the areas of

improving the base datasets, improving Korat’s implementation scheme, modifying the models,

and finding additional applications.

8.1.1 Creating Larger Datasets

An idea for a further work is to generate larger data sets that lead to more well-trained machine

learning models with the aid of supercomputers, and to explore different data generation

techniques such as those based on model checking or symbolic execution. For our project, we

used Korat as our data generation tool. Korat generates samples of a data structure subject to

constraints provided in the RepOk method. We limited the size of our datasets on the order of a

million samples since our personal computers could not handle much more due to both memory

and time limitations. With access to a supercomputer, a researcher could generate datasets with

billions of samples. A supercomputer would be able to not only generate these datasets quickly,

but also train ML models on them quickly.

Another stream of exploration could be in different data generation methods entirely. Methods

based on model checking or symbolic execution may lead to different and interesting results. In

short, Korat’s highly specific method of producing candidate vectors can greatly reduce the

accuracy of models used in real-world applications. Therefore, other data generation techniques

that output data with more robust algorithms may lead to different results when it comes to

model accuracy and prediction metrics.

8.1.2 Making Korat Improvements

With more time to modify Korat, groups interested in further extensions should consider building

new base data type classes that can easily implement other types of graphs, such as undirected

31

graphs, weighted graphs, randomly generated graphs, and hypergraphs. For our usage of Korat,

we essentially treated it as a black-box; using it as is, without modifying its existing classes/data

structures. We were able to write RepOk methods built around the basic data type classes already

implemented in Korat. For instance, we were able to implement directed graphs in Korat using

the pre-existing DAGNode class. Despite its name, this class can represent all directed graphs,

not just Directed Acyclic Graphs (DAGs). However, we were unable to truly implement

undirected graphs. In theory, we could have built an undirected graph class using DAGNodes by

ensuring that for every edge from node U to node V, there was an opposite facing edge from

node V to node U. However, this would have made analysis and implementation of undirected

graphs complicated. So, improved or altogether new base data classes in Korat could lead to

interesting results for more advanced graph types.

8.1.3 Modifying ML Models

In our study, we wanted to test the learnability of graph properties by machine learning models

that were not tuned to do so. Although we were able to collect positive results, perhaps model

accuracy could be improved by hyperparameter tuning these models as well as data

transformation methods such as feature engineering. Improvements like this could be crucial if

our tool were to be deployed in a setting where there is little tolerance for error, such as the

healthcare or transportation industries.

8.1.4 Finding Additional Applications

Checking program and software correctness is an important research direction for the computer

science community. That being said, finding large real-world systems that could benefit from

automated program correctness tools, such as the one we developed, would provide further

motivation for this stream of work. Some existing methods struggle with verifying complex

properties such as the graph properties explored in this paper. Other works that follow our

workflow have not been applied towards graph properties. Our work could have applications in

automated program analysis tools as well as large software systems that are widespread in

32

industry. Given our compressed timeline, we were unable to find specific projects that use work

similar to ours.

8.2 Alternative Design and Implementation Decisions

We concluded three key considerations for system redesigns or changes to our implementation

process which would have either improved our project’s outcome or better equip our system for

future use and research. These include: improving the model training and tuning process, training

the models with libraries which are not only dependent on Python or any single language or

system architecture, and evaluating biases within the domain of our project’s requirements,

specifically Korat.

8.2.1 Streamlining Model Creation

A streamlined workflow to take a property through the data generation, machine learning, and

integrated testing phase would have allowed us to scale up to include perhaps tens or hundreds of

invariants. Though our team was successful in completing our ML Models module, there were a

few challenges which both prevented us from achieving completion faster and possibly inhibited

an improved system design. In particular, the time which it took to go from generating candidate

vectors in Korat to exporting fully trained ML models was a rather lengthy and cumbersome

process. The narrow scope of our design goals meant our team was able to afford a somewhat

inefficient model training process. However, if the number of inputs from the Data Generation

module, including data structures or invariants, ever increased, a more streamlined approach

would be necessary. This would essentially be a new system design which would include:

automatic creation (and recreation) of every type of ML model included within the scope,

automatic feature engineering and included data transformations, and automatic training, testing

with metrics reporting, and selection of the best performing models per invariant. These changes

would greatly increase the ability to output more ML models and iterate through the entire ML

Models module as necessary.

33

8.2.2 Make Model Training Platform Independent (Java)

A redesign consideration that originated from the Integrated Testing Tool module was the idea of

creating and using the trained ML models without the restriction of any environment or platform.

We considered three implementation choices of this module. The first option relied too heavily

on a user’s operating and file systems. For the second choice, though it averts the system reliance

problem by using Java, it does not allow for this project to be easily used with non-Java software

development environments. Many developers write entire systems in multiple languages which

do not include Java, and even though the idea of JUnit testing frameworks is a staple of the Java

platform, similar testing frameworks and requirements exist for many other languages.

Therefore, our integrated tests would have to be re-written and re-compiled for the languages of

any projects which do not use Java. A third alternative implementation choice would have been

to host the functionality of all three modules on a server. Users could then run integrated tests by

accessing our project’s code through an API REST endpoint, which is standard for many

real-world systems, and would permit functionality regardless of choices of operating system or

development language and environment.

8.2.3 New model evaluation and re-training methods

We discovered that though Korat is thorough in how it explores and isomorphically prunes the

space of all possible graphs to explore, the isomorphic nature of its exploration actually limits the

ability for a model trained from Korat’s data to perform well.

Take, for example, the hasOneRoot invariant. Korat method of exploring all possible graphs with

this property creates a set of valid graphs where the graphs, though are all pairwise isomorphic,

all only have its last node set as the root node. In the case of a graph of size 4, the “3” node is

always the root node. You can see an example of such a graph in the following diagram.

34

Figure 3. Diagram of isomorphic reassignment of nodes in a graph

The graph visualized on the left satisfies the hasOneRoot invariant, with node “3” as the root

node. Our team took all of the candidate vector graphs from Korat, and randomly reassigned the

“names” or orderings of their nodes. In the example above, you can see how the nodes were

reassigned: the “3” node becomes “0”, which becomes the new root node. Note that the resulting

graph is isomorphic to the original. This scenario, in which the orderings of a graph’s nodes is

not known, is extremely common in the real world. However, in one case when we took a model

trained to high accuracy on Korat’s output and tested it on the reassigned vectors, its predictive

accuracy fell from 99.9% to 83%. This shows that the models, as they currently are, pose a safety

risk if used for integrated tests in a real-world system. Therefore, the models should be trained on

randomly reassigned output from Korat in order to greatly increase their predictive accuracy.

9.0 CONCLUSION

In conclusion, our team successfully accomplished our two main goals: determine the

learnability of graph invariants with ML models and employ ML models to a software testing

strategy. To answer the question posed by the first goal– “Are graph invariants learnable by ML

Models?” –, we created the Data Generation module and ML Models module using the

methodologies from A Study in Learning Invariants with Machine Learning. In the Data

Generation and ML Models modules, we trained, tested, and evaluated the ML Models using

data from Korat. The positive evaluation metrics for the ML Models indicate that graph

invariants can be successfully learned by ML Models; thus, answering the question of the first

goal. To fulfill the second goal of applying the ML models to a testing suite, we integrated the

ML models into a JUnit testing suite in the Integrated Testing Tool module. The models in the

JUnit test were lightweight and ran in trivial time with 100% accuracy on graphs created by

35

Korat. So, our system design satisfactorily proved the learnability of graph invariants by ML

models and demonstrated a working application of the ML Models in a popular testing suite.

Since our system design was built under the assumption that Korat data is unbiased and under the

restriction of our computing power, further work must be done to evaluate and improve the

system design with randomly produced data and larger graphs. Although our system performed

nearly flawlessly when tested with data from Korat, our team discovered that the models

performed significantly worse with graphs produced randomly. Due to time limitations, we were

not able to explore if tuning the ML models trained on Korat data could improve their

performance with randomly produced graphs. Although we measured that the time and memory

usage of the ML Models was trivial in the evaluation of the Integrated Testing Tool module, we

could not determine if the usage statistics would still be inconsequential when the graphs

increased in size. We could not determine the time and memory costs of larger graphs, because

our personal machines could not create models for graphs any larger than four to five nodes. So,

our design implementation leaves two significant questions to be answered in future research on

developing ML Models from Korat data. Can the ML Models trained from Korat data be tuned

to have better accuracy on randomly produced graphs? And, will the ML Models for graphs

larger than 4 to 5 nodes be efficient in a standard testing environment? We hope that our efforts

will be useful for researchers as they set out to answer these questions.

36

REFERENCES

[1]Usman M., Wang W., Wang K., Yelen C., Dini N., Khurshid S. (2019) A Study of
Learning Data Structure Invariants Using Off-the-shelf Tools. In: Biondi F.,
Given-Wilson T., Legay A. (eds) Model Checking Software. SPIN 2019. Lecture Notes
in Computer Science, vol 11636. Springer, Cham

[2] Facundo Molina, Renzo Degiovanni, Pablo Ponzio, Germán Regis, Nazareno Aguirre,
and Marcelo Frias. 2019. Training binary classifiers as data structure invariants. In
Proceedings of the 41st International Conference on Software Engineering (ICSE
’19). IEEE Press, 759–770. DOI:https://doi.org/10.1109/ICSE.2019.00084

37

APPENDIX A – TABLE OF ML MODEL METRICS RESULTS

A-1

APPENDIX A – TABLE OF ML MODEL METRICS RESULTS

A-2

A-3

A-4

A-5

