Pigeonhole Principle and
some Theorems

Ch. 4 of Extrema Combinatorics

- Jumna

Rohan Gary

The pigeonhole principle: "n+1 pigeons, n holes. The pigeons cant sit in the n holes such that every pigeon is alone."

More generally: If a set of more than kn objects is partitioned into n classes, then some class must have more than kobjects.
warm-vp:
Def. degree of vertex $=\#$ edges adjacent to it.
claim: In any graph, there exist two vertices with the same degree.
Proof: Given undirected graph G on n vertices.
make n pigeonholes \longleftrightarrow degree. $0,1, \ldots, n-1$

We put vertex v into hole k if $\operatorname{deg}(v)=k$.

If we wanted all n vertices to have different degree, then every hole has ore vertex. one vertex x in "o" hole. $\}$ Contradiction. one vertex" in " $n-1$ " hole.

Def. $\alpha(G)$ the independence number of graph 9 . The max number of pairwise non-adjacent vertices. (max ind.set)

Def $X(G)$ the Chromatic number of $G . X(G)$ is the minimum number of colors in a vertex-culoring of G such that no two adjacent vertices have the same color.

Claim: In any graph G with n vertices, $n \leqslant \alpha(G) \cdot X(G)$

Proof: - Partition the vertices into $X(G)$ color classes.

- By pigeonhole principle, some color class will have wore than $n / \times(G)$ vertices.
- So, these vertices, by def. of $X(\xi)$, are pairwise non-adjacent.

$$
\Rightarrow \alpha(G) \geqslant n / x(G) \quad \rightarrow \quad n \leqslant \alpha(G) \cdot \chi(G) .
$$

Claim: Let G be an n-vertex graph, If every vertex
has degree at least $\frac{(n-1)}{2}$, then the graph is connected.

Proof: Take any two vertices $x ; y$. If these vertices don't have an edge between them, we know there are $n-1$ edges to the rest of th graph with $n-2$ vertices.

So, by PHP, there is a shared vertex in there $n-2$ vertices.

So, there is a path from $x \rightarrow y$.

The Erdios-Szekeres Theorem:
Let $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a sequence of different numbers. B is a subsequence of A of k terms if $B=\left(a_{i 1}, a_{i 2}, \ldots, a_{i_{k}}\right)$ where the elements of B append in the same order as they do in A.

If feels like there's a tradeoff between length of longest increasing subsegence and longest decreasing subsequence.

Theorem $(1935): A=\left(a_{1} \ldots a_{n}\right)$ be a sequence of different reals.

If $n \geqslant S r+1$, then either A has an increasing subsequence of $s+1$ terms or A has a decreasing subsequence of $r+1$ terms (or both).

Proof (Seidenbery 1959): Assign to each a_{i} a score $=\left(x_{i}, y_{i}\right)$. $x_{i}=\#$ terms in longest increasing subacevence ending at a_{i}
$y_{i}=$ terms in longest decreasing subteguence starting at a_{i}.

Show, $i \neq j \rightarrow\left(x_{i}, y_{i}\right) \neq\left(x_{j}, y_{j}\right)$.
\qquad
$a_{i}<a_{j} \rightarrow x_{j}>x_{i}$. Longest inc. subserunce ending at $a_{j}>$ that of a_{i}.

$$
a_{i}>a_{j} \rightarrow y_{i}>y_{j}
$$

I can make a longer decreasing subsequence for a_{i} then a_{j} by adding a_{i} to the start of a_{j} 's sequence.

$$
A=(\underbrace{13,2}_{3,1}, 4)
$$

$$
|A|=n \geqslant s r+1
$$

Grid of n^{2} pigeonholes:

Put a_{i} into hole $\left(x_{i}, y_{i}\right) \hat{f}$ in the grid.

$$
l \leqslant x_{i}, y_{i} \leqslant n . \forall i . \quad i \neq j \rightarrow\left(x_{i}, y_{i}\right) \neq\left(x_{j}, y_{j}\right)
$$

either its $x_{i}>r$ or $y_{i}>s$.
\Rightarrow. Longest increasing subsequence is $\geqslant r+1$ or longest decreasing subsequence is $\geqslant S+1$.

A (weak) partial order on a set P is a binary relation $<$ on its elements, $X \sum_{1}^{1} y$ are comparable if $x<y$ or $y<x$ (or both.).
Partially ordered Set =Poset.

- A chain $l \subseteq P$ is a set where

antichoin. all elements in $l l$ are com parable.
- An antichain $Y \subseteq P$ is a set where all elements in y are incomparable.

Lemma (Dilworth 1950): In any partial order on a set P of $n \geqslant s r+1$ elements, there exists either a chain of length $s t 1$ or an antichain of length $r+1$.

Proof: Suppose there is no chain of length $s+1$. Weill define a function $f: P \rightarrow\{1 \ldots . . S\}$.

$$
\rightarrow \text { s classes }
$$

$f(x)=$ the maximal $\#$ of elements in a chain where x is the greatest element.

By the pigwntole principle, some class will have at least $r+1$ elements. By the def. of f, these elements are incomparable. So, there is some antichain of length at least $r+1$.

Triangles in graphs.
c
How many edges ar possible in a triangle free graph on $2 n$ vertices?"

Triangle $=\{x, y, z\}$ with edges bitumen $x, y\{z$,

$2 n$ vertices $\rightarrow 2 n-1$ edges Spanning tree \rightarrow notrismbles.

In edges in a big cycle.
$2 n v e r t i c e s$ as a bipartite graph.

$$
\rightarrow n^{2} \text { edges. }
$$

max possible edges in a triangle free graph.

Theorem: (Mantel 1907): If a graph on $2 n$ vertices has $n^{2}+l$ edges, then G contains a triangle.

Proof: Inductively.

Base case: $\eta=1 \rightarrow 2$ vertices. cant have 2 edges. Statement is true.

Now, will assume it is the for n and well consider a graph on $\begin{gathered}2(n+1) \\ 2 n+2\end{gathered}$ vertices with $\underbrace{(n+1)^{2}+1}$ edges.

Let x, y be adjacent vertus in G.
Let H be the remaining subgraph.

$$
x \longmapsto y
$$

G
$2 n$ vertices

If H has $\geqslant n^{2}+1$ edges $\rightarrow H$ has a triangle were done.

Suppose $t 1$ has at most n^{2} edges. Then.

$$
(n+1)^{2}+1=n^{2}+2 n+2 \quad \text { total edges. }
$$

$-\quad n^{2}$
edges in H

$$
=2 n+2 \quad \text { edges }
$$

-

edge (x, y)

$$
=2 n+1 \text { edges between } x^{1} \leqslant y
$$

$2 n+1$ edges to $2 n$ vertices. So, there must be a shared vertex z. sit the triangle $\{x, y, z\}$ is formed.
\Rightarrow lots of proofs of this.!!

$$
\text { Triangles }=3-\text { clique }
$$

How does this generalize to k-cliques where $k \geqslant 3$??

Turan's theorem! (1941) If a graph $G=(u, E)$ on n vertices has no $(k+1)$-clique for $k \geq 2$, then

$$
\begin{equation*}
|E| \leqslant\left(1-\frac{1}{k}\right) \frac{n^{2}}{2} \tag{T}
\end{equation*}
$$

$K=2 \rightarrow$ Mantel's Theorem.

Proof: Inductively on n.

" $k=2 \rightarrow$ Mantel's The.

$$
|E|=0 \leq\left(1-\frac{1}{k}\right) \frac{1}{2} .
$$

Suppose (T) is true for all graphs on at most $(n-1)$ vertices. Let $G=(V, E)$ be a graph on n vertices without $(k+1)$ cliques with a maximal number of edges.
$\rightarrow G$ must have some k-clique.
Let A be a k-clique and set $B=V-A$.
$e_{A}=\#$ edges inside of A.

$$
=\binom{k}{2}=\frac{k \cdot k-1}{2}
$$

$e_{B}=\#$ edges in side of B.
$e_{A, B}=\#$ edges across A and B.

$$
e_{B} \leqslant\left(1-\frac{1}{k}\right) \frac{(n-k)^{2}}{2} \leftarrow \text { from } I H
$$

Since G has no $(k+1)$-clique, every $x \in B$
is connected to at most $k-1$ vertices in A.

$$
\begin{gathered}
Q_{A, B}=(n-k) \cdot(k-1) . \\
\downarrow
\end{gathered}
$$

vertices in B

Identity:

$$
\begin{aligned}
&\left(1-\frac{1}{k}\right) \frac{n^{2}}{2}=\binom{k}{2}\left(\frac{n}{k}\right)^{2} \\
& \frac{k \cdot k-1}{2} \cdot \frac{n^{2}}{k^{2}}=\frac{k^{2}-k}{2} \cdot \frac{n^{2}}{k^{2}} \\
&=\frac{n^{2}}{2}\left(\frac{k^{2}-k}{k^{2}}\right)=\frac{n^{2}}{2}\left(1-\frac{1}{k}\right) .
\end{aligned}
$$

$$
\begin{align*}
|E| & \leqslant e_{A}+e_{B}+e_{A, B} \tag{k}\\
& =\binom{k}{2}+\left(1-\frac{1}{k}\right) \frac{(n-k)^{2}}{2}+(n-k) \cdot\left(k-1 \cdot \frac{k}{2} \cdot \frac{2}{k}\right. \\
& =\binom{k}{2}+\binom{k}{2}\left(\frac{n-k}{k}\right)^{2}+\binom{k}{2}(n-k)\left(\frac{2}{k}\right)
\end{align*}
$$

$$
\begin{aligned}
& =\binom{k}{2}\left(1+\left(\frac{n-k}{k}\right)^{2}+\frac{2(n-k)}{k}\right) \\
& =\binom{k}{2}\left(1+\frac{n-k}{k}\right)^{2} \\
& =\left(1-\frac{1}{k}\right) \frac{n^{2}}{2}
\end{aligned}
$$

Extremal Graph Theory

- Extremal Combinatorres \rightarrow Stasys Jukns.

Thanks !

