FLOWS
MAX-Flow
GIVEN a directed graph
$$G = CV, E$$
 where
every edge e has C_e or $C(e) \in E_1 \dots V_s^2$
Def: A flow [vector] $f \in \mathbb{R}^m$
I. $P \ge 0$
2. (onservation of flow: $4 \cup 4 \ge 5 + 3$
 $E_1^{I} f_e = E_1^{I} f_e$
 $e = (U, V)$ $e \ge (V, W)$
 3 . Form) conservation
 $E_1^{I} f_e = E_1^{I} f_e$
 $e = (S, n)$ $e \ge (V, E)$
Def. f is fensible when
 $4 e \in E : P_e \le C_e$
 $\frac{CP}{Brimulation}$:
 $max \le f_e$
 $e \ge (S, W) \in E$

fe≤ Ce te

f Conservation constraints

f 20

Runtime w) IPM: O (m^{7/2} L) when L=p=4yb(v)

Stoc '13 Orlin : O(mn) SP

<u>CP-free approach</u> <u>Ford-Fulkeson</u>. Runtime $D(mf^*)$ where f^* is ralue of max-Blow.

FF!
$$G_{f}:ref.gaph$$

 $f:=0$ $G_{f}:ref.gaph$
while there is an augmenting point in G_{f} ,
lef f' be some flow on the path.
 $f=f'+f.$ Par Fix G_{f} .

 $\frac{Min Cut - Max Flow Thm!}{Value of Max - flow = Value ut min-cut in G}$ $Cut = (S,T) \quad S \cup T = V$ $\frac{SeS}{teT}$

Runstine: O(mf*) Pseudo polynomial

$$\frac{(a p a city - S caled FF')}{G_{1} each edge has c_{2} or c(e)}$$

$$(a sist capacity this is bit-string of length [log v]
where $f = e_{1}$
 $edges'_{e_{1}} = 0$ $f = 0$
 $e_{2} = 0$ $f = 0$
 $e_{2} = 0$ $f = 0$
 $e_{3} = 0$ $f = 0$
 $e_{3} = 0$ $f = 0$
 $e_{4} = 0$ $f = 0$
 $e_{2} = 0$ $f = 0$
 $e_{2} = 0$ $f = 0$
 $e_{3} = 0$ $e_{3} = 0$ $f = 0$
 $e_{3} = 0$ $f = 0$ $e_{3} = 0$ $e_{3$$$

- Def. The level saph $L \subset G_{f}$. L contains only the admissible edges. L = D + G.
- Def. A path is admissible if all of its edges are admissible. A flow is admissible if its made up of admissible sadt paths.
- Def. A blocking blow is an admissible blow where on each snat path, at least one edge is saturated (Ce=fe).

=) RT: D(n. (time to find a Hocking))

L contains only admissible edges.

what edges (an appear in $L^{\prime, n}$. some edges $L \in$. rev(L) . orange edges $\in G_{p}$ but not in L $d_{L^{\prime}}(S,t) \ge d_{L}(S,t)$

Q: (an
$$d_{L'}(s, \epsilon) = d_{L}(s, \epsilon)$$
 : NO!
 $\Rightarrow d_{L'}(s, \epsilon) > d_{L}(s, \epsilon)$
 $"$

Finding a blocking flow: 1) Special case: unit - corpacity modified DFS 1) advance 2) retreat 3) avgment 0(m) =) RT : unit-coup : O(mn) General Capacity somers 1) advance after every nadvances, then what? -> deuk ledge mŋ 2) retrat < m times 3) augment delet El edge per avg. Sm times

1 m es

$$Rt:O(mn) + O(m) + O(m) = O(mn)$$