

MAX -Flow
Given a directed graph $G=(V, E)$ where every edge e has c_{e} or $c(e) \in\{1 \ldots v\}$

Def. A flow [vector] $f \in \mathbb{R}^{m}$

$$
\text { 1. } f \geqslant 0
$$

2. Conservation of flow: $\forall v \notin\{s, t\}$

$$
\longrightarrow \quad \sum_{e=(u, v)} f_{e}=\sum_{e=(v, w)} f_{e}
$$

\rightarrow 3. Total conservation

$$
\begin{aligned}
& \sum_{e=(s, u)} f_{e}=\sum_{e=(v, t)} f_{e} \\
& e=(v,
\end{aligned}
$$

Def. f is feasible when

$$
\forall e \in E: f_{e} \leqslant c_{e}
$$

CP formulation:

$$
\begin{aligned}
& \max \sum_{1} f_{e} \\
& e=(s, u) \in E \\
& \text { s.t. }
\end{aligned}
$$

$$
f_{e} \leqslant c_{e} \quad \forall e
$$

f Conservation constraints

$$
f \geqslant 0
$$

Runtime w) IPM: $O\left(m^{7 / 2} L\right)$ where $L=P \operatorname{dyb}(u)$
STOL ' 13 Orin: O(mn) SP
$C P$-free approach
Ford-Fulkeson. Runtime $O\left(m f^{*}\right)$ where f^{*} is value of max -blow.

FF:

$$
f:=0 \quad G_{f}=\text { res. gnp } \quad 0 \xrightarrow[4 / 4]{k \cdots \cdots} 0
$$

while there is an augmenting path in G_{f}, let f^{\prime} be some flow on the path.

$$
f=f^{\prime}+f \text {. Fix } G f \text {. }
$$

Min Cut - Max flow Thu:
value of max -flow $=$ valve of min-eut in G

$$
\text { cut }=(S, T) \quad \underset{\substack{S \in S \\ t \in T}}{\substack{ \\ \\\hline}}
$$

Runtime:
$O\left(m f^{*}\right) \quad$ Pseuds polynomial

Capacity -scaled FF:
G, each edge has c_{e} or (C)
cLassist capacity is bir-string of length $\left[\log _{2} \cup\right\rceil$

wort once: Ire appended I to $c^{\prime}(e)$ for ency e The min-cut cunt be lager er than m-edses

$$
\Rightarrow f^{*} \leq m
$$

Every ier. I rum FF $\rightarrow O\left(\mathrm{~m}^{2}\right)$
RT: $O\left(\log _{2} u \cdot m^{2}\right) \quad w p$
Blocking flows: (Vinic 20%)
Def. For each v in the residual graph, let $l(v)$ be the length of shortest $s \rightarrow v$ path.

Def. An edge $e=(u, v)$ is admissible if $l(v)=l(u)+1$

$$
\Rightarrow
$$

Def. The level soph $L C G_{f}$. L contains only the admissible edges.

$$
C=D A G .
$$

Def. A path is admissible if all of its edges are admissible. A flow is admissible if its mate up of admissible $s \rightarrow t$ paths.

Def. A blocking flow is an a Amssrible flow where on each sat path, at least one edge is saturated $\left(c_{e}=f_{e}\right)$.

onit-cap

$$
\begin{aligned}
& B F=1 \\
& M F=2
\end{aligned}
$$

Claim: After augmenting along a blocking blow, the shortest path distance $[d(s, t)]$ from S $\rightarrow t$ in the new Level graph strictly increases.

$$
\Rightarrow R T: \quad O\left(n \cdot\left(\begin{array}{c}
\text { time to find a blockings }
\end{array}\right)\right)
$$

P noe:
$L=$ level mph before argumentation

$$
L^{\prime}=" \text { in after " }
$$

L contains only admissible edges.

what edges can appear in L^{\prime} ?

- some edges $L \leftarrow$
- $\operatorname{rer}(L)$
- orange edges $\in G_{p}$ butnotin L

$$
d_{L^{\prime}}(s, t) \geqslant d_{L}(s, t)
$$

Q: can $d_{c}(s, t)=d_{c}(s, t) \quad: N O!$

$$
\Rightarrow d_{L}(s, t)>d_{L}(s, \epsilon)
$$

Finding a blocking flow:

1) Special case: unit-capacity
modified DFS
2) advance
3) retreat
4) augment
$O(m)$
$\Rightarrow R T:$ unit-cap: $O(m n)$
General capacity gropes
5) advance ate' every n advances, then what? \rightarrow delete ledge $\underline{m n}$
6) returat $\leq m$ times
7) ar gent delete $\leqslant 1$ edge per aug. $\leq m$ times
RT:O(mn)+O(ml+O(m)=O(mn)

Actual Runtime: $O\left(m n^{2}\right) \quad S P$

4 Thanks!
Hopcops-kanp Biparbte-matening in $O(m \sqrt{n})$

