

Ch. 6 of Vaziranis Approx Alg.

Problem: Feedback Vertex Set
Undirected graph $G=(V, E)$
$\omega: V \rightarrow \mathbb{R}_{\geqslant 0}$
Goal: Find a min-weight subset of V whose removal leaves G acyclic.

Deft:
The characteristic vector of a simple of ale C is a vector in $G F[2]^{m}, m=|E|$. It has Z's in components comsponding to edges of
C, and o's elsewhere.

$$
\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

The cycle space of G is the subspace of $G F[2]^{m}$ that is spanned by the char. vectors of all simple cycles in G.

The cyclometic number of $G, C y c(G)$, is the dimension of this space.
comps (G) is $\#$ connected components in G.

Thy: 6.2: $\operatorname{CyC}(G)=|E|-|U|+\operatorname{comps}(G)$
Pf:

1) Cycle space is sum of its connected comp. and $s o$ is the cyclomatic number. So, we only consider a connected G.

Goal: $\quad \operatorname{cyc}(G)=|E|-|0|+1$
\rightarrow Let T be a spanning free in G. For each nontree edge e, define $e^{\prime} s$ fundamental cycle to be $T \cup\{e\}$.

There
The get of char. vectors of all such

- fundamental cycles are linearly independent.

So: $\operatorname{cyc}(G)$

$$
\begin{aligned}
& \geqslant|E|-|V|+1 \\
& =|E|-(|U|-1)
\end{aligned}
$$

Each edge e in T defines a "fundamental cut" (s, \bar{s}).

Define characteristic vector of a cut to be a vector in $G F[2]^{m}$ where components corresponding
to edges in the cut get I's, o's elsewhere.
Consider the $|U| \sim \mid$ vectors defined by edges of T.
Each cycle must coss each cut an even number of times. So, these vectors are ortursonal to the cycle space of G.
cu of
Cu of Gus cycle

C
J

$$
[]=\underbrace{1+H+\ldots . .1}_{\text {even times }}
$$

GP:
additive imese $\forall a \in f, \exists a^{\prime}$ sit. $a t a^{\prime}=0$

+	0	1
0	0	1
1	1	0

additive rident.

$$
\text { F } a \in F \quad \forall a^{\prime} \in F \quad a^{\prime}+a=a^{\prime}
$$

These $|U|-1$ vectors defied by edses in T. Terse $|v|-\mid$ vectors are lin. Ind. So, the dim. of this space is at least $|v|-1$.

$$
\begin{aligned}
& \operatorname{cyc}(G) \leq|E|-(|v|-1) \\
&=|E|-|v|+1 \\
& \forall \\
& \operatorname{cyc}(G)=|E|-|v|+1
\end{aligned}
$$

Denote by $\delta_{G}(v)$ the decrease in the cyclomatic number of G on removing v. Since the removal of a feedback vertex $F=\left\{v_{1}, \ldots v_{f}\right\}$ brings $\operatorname{CyC}(G)$ down to zero.

$$
\operatorname{cyc}(G)=\sum_{i=1}^{f} \delta_{G_{i-1}}(v)
$$

where:

$$
G_{0}=G
$$

for $i>0: \quad G_{i}=G-\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}$.
$\rightarrow C y C(G) \leqslant \sum_{V \in F} \delta_{G}(v)$ by lemma below:

Lemma 6.4: If H is a sulgraph of G, then

$$
\delta_{H}(v) \leqslant \delta_{G}(v) .
$$

Let's say that the wright function is cyclomatic if there is a constant $c>0$ sit. the wt. of each vertex is $C \cdot \delta_{G}(v)$.
by (*)

$$
C \cdot \operatorname{cyc}(G) \leqslant C \cdot \sum_{V \in F} \delta_{G}(V)=W(F)=O P T
$$

well show that for any cyclomatic weight function.
9 minimal feedback vertex set has weight within twice the optimal.

Let $\operatorname{deg}_{1}(v)$ denote degree of v in G.

Let comps $(G-v)=\$$ conn. comporents in Gr\{u\}.

Claim: For a connected graph G:

$$
\begin{aligned}
& \delta_{G}(v)=\operatorname{deg}_{G}(v)-\operatorname{comps}(G-v) \\
& \text { Thm: 6.2: } \operatorname{cyc}(G)=|E|-|V|+\operatorname{comps}(G) \\
& \operatorname{cyc}(G)=|E|-|v|+1 \\
& \operatorname{cyc}(G-v)=\left(|E|-\operatorname{deg}_{G}(v)\right)-(|v|-1)+\operatorname{comps}(G-v) \\
& \operatorname{cyc}(G)-\operatorname{cyc}(G-v)= \\
& |E|-\left|\nu t^{\prime} \pm \gamma^{\prime}-\prod_{C}\right|+\operatorname{deg}_{G}(U)+\operatorname{co} \mid-t^{\prime}-\operatorname{comps}(G-U) \\
& =\operatorname{deg}_{G}(v)-\operatorname{comps}(G-v)
\end{aligned}
$$

Cemma: Let H be a subgraph of $G\left[\begin{array}{c}\text { not nececrarily } \\ \text { versta induced }\end{array}\right]$

Then, $\quad \delta_{H}(v) \leqslant \delta_{G}(v)$.

Proof: We only prov it for the connected comporenos of $G \quad \varepsilon H$ that contain V.
\rightarrow he assure $G \dot{\varepsilon}_{1} H$ are connected.

To. show. $^{\operatorname{deg}_{H}(v)-\operatorname{comps}(H-v) \leqslant \operatorname{deg}_{G}(v)-\operatorname{comps}(G-v)}$

Let c_{1}, \ldots, c_{k} be components left over by removing v in H.

1) Edges of G-H that are NOT incident at v.

$$
\operatorname{comps}(H-v) \geqslant \operatorname{comps}(G-v)
$$

2) Edges of G-H that ARE incident at V.

These edges may add 1 to \# comps, but its balanced out by its contribution to degree.

$$
\operatorname{deg} H_{H}(v)-\operatorname{comps}(n-v) \leqslant \operatorname{deg}_{G}(v)-\operatorname{comps}(G-v)
$$

$\delta_{H}(v) \leqslant \delta_{G}(v)$
for sore suzgren H

Lemma: If F is a minimal feedback vertex set of 6 , then

$$
\sum_{v \in F} \delta_{G}(v) \leq 2 \cdot c_{y c}(G)
$$

Proof:'
-Prove it for a connected graph G.

Let $F=\left\{v_{1}, \ldots, v_{f}\right\}$ and let k be the number of connected components after deleting F from G.

Partition these components into 2 types.

1) has edges incident to only 1 vertex in F
2) has edges incident to 2 or mon vertices
in F

Say there are t components of type and kt components of type 2 .
we will show:

$$
\begin{aligned}
& \sum_{i=1}^{f} \delta_{G}\left(v_{i}\right)=\sum_{i=1}^{f}\left(\operatorname{deg}_{G}\left(v_{i}\right)-\operatorname{comps}\left(G-v_{i}\right)\right) \\
& \leqslant 2(|E|-|v|) \leqslant 2 \operatorname{cyc}(G)
\end{aligned}
$$

$$
c_{y c}(G)=|E|-|V|+\operatorname{comps}(G)
$$

clearly: $\sum_{i=1}^{f} \operatorname{comps}\left(G-v_{i}\right)=f+t$
\# Components of type

Induction: on $f=|F|$
Base: $f=1$

$$
\operatorname{comps}_{2}(G-v)=t+1
$$

Left to prove:

$$
\begin{aligned}
& \sum_{i=1}^{f} \operatorname{leg}_{G}\left(v_{i}\right) \subseteq 2(|E|-|v|)+f+t \\
& \sum_{i=1}^{f} \delta_{G}\left(v_{i}\right)=\sum_{i=1}^{f}\left(\operatorname{deg}_{G}\left(v_{i}\right)-\operatorname{comps}\left(G-v_{i}\right)\right) \\
& \leqslant 2(|E|-|v|) \leqslant 2 \operatorname{cyc}(G)
\end{aligned}
$$

Since f is a $F V S$, these k components an all trees. 80, \# edges in these k components.

$$
(|v|-f)-k
$$

Lour bound on $\&$ edges in the $\operatorname{cut}(F, V-F)$

Since F is minimal, each $v_{i} \in F$ must be in some cycle that contains no other reltex from F. So, eaCh v_{i} must have at least tho edges incident at ore of these components.

For eats v_{i}, arbitrarily remove ore of these edges.
each of the t components sail have at (type)
least ledge in the cut (F ,V-F). Each of the k-t components still hay at least 2 ancona (type 2) edges in the cut.
\# edges in cut $(F, V-F)$ is at least

$$
\begin{aligned}
& f+t+2(k-t)=f+2 k-t \\
& \sum_{i=1}^{f} \operatorname{deg}_{G}\left(v_{i}\right) \leqslant 2|E|-2(|v|-f-k)-(f+2 k-t)
\end{aligned}
$$

Goal: $\quad \sum_{i=1}^{f} \operatorname{deg}_{G}\left(u_{i}\right) \leq 2|E|-2|v|+f+6$

$$
2|E|-2|v|+2 f+2 k-f-2 k+t
$$

$$
2(|E|-|v|)+f+t
$$

Corollary: $\omega: V \rightarrow \mathbb{R}_{20} \quad$ cyclomatic wt. function.
F is a minimal frS. Then,

$$
\begin{aligned}
& w(F) \leqslant 2 \cdot O P T \\
& w(v)=c \cdot \delta_{G}(v)
\end{aligned}
$$

dec. in cyclomatic $\#$ by removing v from G

Given Graph $G=(v, E)$ and a wb. function w,
let

$$
c=\min _{u \in V}\left\{\frac{w(v)}{\delta_{G}(v)}\right\}
$$

$t(v)=c \cdot \delta_{G}(v)$ largest cyclomatic weight function in ω

$$
\begin{aligned}
w^{\prime}(v) & =w(v)-t(v) \quad \text { residual weight function } \\
& =w(v)-c \cdot \delta_{G}(v)=w(v)-\frac{w(v)}{\delta_{G g} f \cdot} \cdot \frac{\delta / G(v)}{}
\end{aligned}
$$

Let V^{\prime} be the set of vertices with a positive residual wt function value.

$$
V^{\prime} C V
$$

Let G^{\prime} be the subgraph of G induced on V^{\prime}.
using operation above, decompose G ind nested subsuphs.
$t_{i}(\nu)$ cyc. function on G_{i}
w^{\prime}

Let these graphs be $G=G_{0} \supset G_{1} \supset G_{2} \supset \ldots \supset G_{k}$
G_{i} is the induced subgraph on vertex set V_{i} where $V=U_{0} \supset v, \partial u_{2} \supset \ldots \supset v_{k}$.

Let t_{i} for $i=0 \ldots k-1$ be the cyclomatic weight function for graph G_{i}.
$\omega_{0}=\omega$ the resides weight function for G_{0} to largest cyclomatic wt. function for w

$$
\omega_{1}=\omega_{0}-t_{0}
$$

End, w_{k} residual wb. function for acyclic G_{k}. let $t_{k}=w_{k}$.

He weight of vertex v is decomposed into the wrights $t_{0}, t_{1}, t_{2} \ldots$

$$
\sum_{i=0}^{k} t_{i}(v)=w(v)
$$

Lemma 6.7: Let H be a subgraph of $G=(U, I)$ on rester set $V^{\prime} C V$. Let F be a minimal FVS on H. Let $F^{\prime} \subseteq V-V^{\prime}$. be
*t minimal set s.t. FUF' is a FUS for G, then FUF' is a minimal Frs for G.

Proof: Let $v \in F$ be some vertex. Since F is minimal, there mat be some cycle C that uses v but no other vertex from F.
we know, $F^{\prime} \subseteq V-V^{\prime}$ so $F^{\prime} \cap v^{\prime}=\varnothing$.
So, C uses only the vertex $\cup F \cup F^{\prime}$.
So, FUF' is minimal.

LAYERING

Algorithm for FVS:

1. Decomposition phase

$$
H \leftarrow G, w^{\prime} \leftarrow w, i \leftarrow 0
$$

While H is not acyclic

$$
\begin{aligned}
& C \leftarrow \min _{v \in V}\left\{\frac{w^{\prime}(v)}{\delta_{H}(v)}\right\} \\
& G_{i} \leftarrow H, G_{i} \leftarrow c \cdot \delta_{G_{i}}, w^{\prime} \leftarrow w^{\prime}-t_{i}
\end{aligned}
$$

$H \in$ subgraph of G_{i} induced by vertices v sit.

$$
\begin{gathered}
\omega^{\prime}(\nu)>0 \\
i \leftarrow i+1 \\
k \in i, G_{k} \leftarrow H
\end{gathered}
$$

2.

$$
F_{k} \leftarrow \varnothing
$$

F_{i} is FUS for G_{i}

For $i=k, \ldots, 1$: extend F_{i} to a FVS for $F_{c^{\prime}-1}$ by adding a minimal set of vertices from $v_{i-1}-v_{i}$.

Output Fo.
F_{0} is frs for $G_{0}=6$

Thy: factor 2 -approx.

Proof: Let F^{*} be an optimal FVS for G. Since G_{i} is an induced subsmph of $G, F^{*} \cap V_{i}$ muss be a FUS for $G_{i}\left[\begin{array}{l}\text { not necessarily } \\ \text { ne best Ger } G_{i}\end{array}\right]$. Since, the weights of vertices have bern decomposed:

$$
O P T=w\left(F^{*}\right)=\sum_{i=0}^{k} \epsilon_{i}\left(F^{*} \cap v_{i}\right) \geqslant \sum_{i=0}^{k} O P T_{i}
$$

When oPT is optime n rus for G_{i}.
our alg $\rightarrow F_{0}$.

$$
w\left(F_{0}\right)=\sum_{i=0}^{k} t_{i} \cdot\left(F_{0} \cap v_{i}\right)=\underbrace{\sum_{i=0}^{k} t_{i}\left(F_{i}\right)}
$$

we know F_{i} is a minimal frs for G_{i}.
we know $0 \leq i \leq k-1, t_{i}$ is a cycl. wh. funcron.
by lemma $6.5 \quad t_{i}\left(F_{i}\right) \leqslant 2.0 P T_{i}$
$F_{k}=\varnothing$.

$$
\begin{aligned}
& w\left(F_{0}\right)=\sum_{i=0}^{k} t_{i}\left(F_{i}\right) \leq \sum_{i=0}^{k} 2 \cdot \text { orT } T_{i}=2 \cdot \sum_{i=0}^{k} \text { or } T_{i} \\
& \leqslant 2 \cdot \text { OPT }
\end{aligned}
$$

ロ

Tignt exsmple:

(1) Thx.

