Approximation Algorithms for Cut Problems
ch. 4 of
Vazirani's Approximation Aborititms

Multiway Cut Problem: Given an undirected, connected, weighted $G=(V, E)$. Given a set $S=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$. A multiwary-cut is a set ot edges whose removal disconnects all the si's from each other.
min-weight

min k-cut problem? A k-cur is a set of
edges whose removal leaves k-connected components. We want min-weight such k-cut.

Multiway cut for fixed cut $k \geqslant 3$ is NP. Hand. min k-cut is NP-Hard if k is part of the input. !

Good news \rightarrow Simple approx. algorithms.
Approx. factor $2-\frac{2}{k}$

Multiway Cut:
An isolating cut for S_{i} is a min-weight cut that disconnects S_{i} from the other terminals.

Algorithm:

1. For each $S_{\hat{c}}$ compute the min-weight isolating cut.
2. Discard the heaviest, output the union
of the rest $[$ call that union $c]$.

Step 1:

Find $\min \quad s_{i}-t$ cut.

Thm: MC Alg. has an approximation guarantee of $2-\frac{2}{k}$.

Proof: Let A be the optimal multiway cut in
G. When we remove $A \rightarrow k$ connected components. $V_{1}, V_{2}, \ldots, V_{k}$. Let's call A_{i} the cut that disconnects V_{i} from the graph.

Each edge in A appears in tho of the $A_{i}{ }^{\prime}$ s.
in A_{i}, there's sowe edge disconnacting V_{i} from some otur v_{j}.

min-weight
C_{i} is an isolating $c u$ for S_{i}. We know,

$$
\begin{aligned}
& w\left(C_{i}\right) \leqslant w\left(A_{i}\right) . \\
& C=\bigcup_{i=1}^{k} C_{i} \quad \text { "the heoriest" } \\
& w(C) \leqslant\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} w\left(C_{i}\right) \leqslant\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} w\left(A_{i}\right)
\end{aligned}
$$

Tight Example:

S,

$$
\frac{C}{(k-1)(2-\varepsilon)} \frac{\text { OPT }}{k}
$$

Min K-Cut: Gomory-Hu trees

Let tree T be a tree on the vertex set V of G.
Let e be an edge in T. If we remove e, we split T into two sets of vertices (s, \bar{s}). The edge c is in T is associated with the cut (S, \bar{s}) in G.

1. $\forall u, v \in T$, the weight of a min uv cot in G is the same as the weight of a min $u-v$ cut in T.
2. The weight of edge e in T is the weight of the cut (S, \bar{s}) in G.
$G=(v, E)$
a

Gonory-MU Tree

Lemma: Let S be the union of cuts in G associated with l edges in T. Removing δ from G leaves $l H$ connected components behind.

Proof: Removing the l edges in T leaves lt connected components in T. Calltuse vertex sets $V_{1}, V_{2}, \ldots, v_{l+1}$. Removing S
from G disconnects every pair U_{i}, V_{j}. So, we have at least $l+1$ connected components.

Alg. K-cut:

1. Compute a Gomory - Hs Tres of G
2. Output the union of the lightest $k-1$ cuts of the $n-1$ cuts in T.
[call this union c].

Theorem: Alg. K-cut guarantees an approximation factor of $\quad 2-\frac{2}{k}$.

Proof: Let A be an optimal k-cut in G. We view $A=A_{1} \cup A_{2} \cup \cdots \cup A_{k}$. Let A_{i} be the cut that separates V_{i} from the rest ut the graph.

Since each edge edge of A is in tho of on A_{i}^{\prime} 's.

$$
\begin{gathered}
\sum_{i=1}^{K} w\left(A_{i}\right)=2 w(A) \\
\left(v_{k}\right)
\end{gathered}
$$

Assume, A_{k} is the heaviest of these cur.

Let B be the set of edges in T that Connect across tho of the sets $v_{1}, v_{2}, \ldots, v_{k}$.

Consider a new graph on the vertex set V and edge set B. Shrink each $v_{1}, v_{2}, \ldots, v_{k}$ into just ore vertex. \rightarrow Connected graph.

Throw away edges until we have a tree. $B^{\prime} \subset B$ are the leftover edges.

$$
\left|B^{\prime}\right|=k-1 .
$$

An edge e is associated
with the vertex set it comes out of.

$$
e=(u, v) \in B^{\prime}
$$

The weight of a min -uv cut in G is $w^{\prime}(u, v)$.
A_{i} is a uv cut.

$w^{\prime}(u, v) \leqslant w\left(A_{i}\right)$
C is the union of the lightest $k-l$ cuts:

$$
\begin{aligned}
& w(c) \leqslant \sum_{e \in B^{\prime}} w^{\prime}(c) \leqslant \sum_{i=1}^{k-1} w\left(A_{i}\right) \leqslant\left(1-\frac{1}{k}\right) \sum_{i=1}^{k} w\left(A_{i}\right) \\
& \leqslant 2\left(1-\frac{1}{k}\right) w(A) .
\end{aligned}
$$

Tight Example:

G:

GH tree:

Sazinni
Sarran
Proot by R.Rasi @CMV
Thanks!!

